
Concept explainers
(A)
To define:
The definition of integers
(A)

Explanation of Solution
Given:
The integer number
Concept used:
The set of integers consists of zero
Calculation:
An integer (from the latin integer meaning whole) is colloquially defined as a number that can be written without a fraction component
For example :-
The set of integers consists of zero
It is denoted by
The integers from the smallest group and the smallest ring the natural numbers
(B)
To define:
The definition of a rational number
(B)

Explanation of Solution
Given:
The rational number
Concept used:
Anrational number is a number that can be expressed as the quotient or fraction
Calculation:
In mathematics
Anrational number is a number that can be expressed as the quotient or fraction
Since q may be equal to
Every integeris a rational number
The set of all rational numbers , the rationals, field of rational , or the field of rational numbers is usually denoted by
The decimal expansion of a rational number always either terminates aftera finite number of digits
Any repeating or terminating decimal represents a rational number
(C)
To define:
The definition of airrational number
(C)

Explanation of Solution
Given:
The irrational number
Concept used:
The set of all irrrationalnumbers , the irrationals, field of irrational , or the field of irrational numbers is usually denoted by
Calculation:
In mathematics
An irrational number is a number that can notbe expressed as a fraction for any integers and irrational numbers have decimal expansions that neither terminate nor become periodic
Every transcendental number is irrational number
The irrational numbers are all the real numbers
The ratio of lengths of two line segments is an irrational number
Irrational numbers are the ratio
The set of all irrrationalnumbers , the irrationals, field of irrational , or the field of irrational numbers is usually denoted by
(C)
To define:
The definition of a real number
(C)

Explanation of Solution
Given:
The real number
Concept used:
The set of all real numbers, field of real , or the field of real numbers is usually denoted by
Calculation:
In mathematics
A real number is a value of a continuous quantity that can represent a distance along a line
The real numbers include all the rational numbers
Such as the integers abd fraction and all irrational numbers
The set of real numbers is uncountable
That is both the set of all natural numbers and the set of all real numbers are infinite sets
The cardinality of the set of all real numbers is strictly greater than the cardinality of the set of all natural numbers
The set of all real numbers, field of real , or the field of real numbers is usually denoted by
Want to see more full solutions like this?
Chapter 1 Solutions
EBK PRECALCULUS: MATHEMATICS FOR CALCUL
- Hello, I would like step by step solution on this practive problem please and thanks!arrow_forwardHello! Please Solve this Practice Problem Step by Step thanks!arrow_forwarduestion 10 of 12 A Your answer is incorrect. L 0/1 E This problem concerns hybrid cars such as the Toyota Prius that are powered by a gas-engine, electric-motor combination, but can also function in Electric-Vehicle (EV) only mode. The figure below shows the velocity, v, of a 2010 Prius Plug-in Hybrid Prototype operating in normal hybrid mode and EV-only mode, respectively, while accelerating from a stoplight. 1 80 (mph) Normal hybrid- 40 EV-only t (sec) 5 15 25 Assume two identical cars, one running in normal hybrid mode and one running in EV-only mode, accelerate together in a straight path from a stoplight. Approximately how far apart are the cars after 15 seconds? Round your answer to the nearest integer. The cars are 1 feet apart after 15 seconds. Q Search M 34 mlp CHarrow_forward
- Find the volume of the region under the surface z = xy² and above the area bounded by x = y² and x-2y= 8. Round your answer to four decimal places.arrow_forwardУ Suppose that f(x, y) = · at which {(x, y) | 0≤ x ≤ 2,-x≤ y ≤√x}. 1+x D Q Then the double integral of f(x, y) over D is || | f(x, y)dxdy = | Round your answer to four decimal places.arrow_forwardD The region D above can be describe in two ways. 1. If we visualize the region having "top" and "bottom" boundaries, express each as functions of and provide the interval of x-values that covers the entire region. "top" boundary 92(x) = | "bottom" boundary 91(x) = interval of values that covers the region = 2. If we visualize the region having "right" and "left" boundaries, express each as functions of y and provide the interval of y-values that covers the entire region. "right" boundary f2(y) = | "left" boundary fi(y) =| interval of y values that covers the region =arrow_forward
- Find the volume of the region under the surface z = corners (0,0,0), (2,0,0) and (0,5, 0). Round your answer to one decimal place. 5x5 and above the triangle in the xy-plane witharrow_forwardGiven y = 4x and y = x² +3, describe the region for Type I and Type II. Type I 8. y + 2 -24 -1 1 2 2.5 X Type II N 1.5- x 1- 0.5 -0.5 -1 1 m y -2> 3 10arrow_forwardGiven D = {(x, y) | O≤x≤2, ½ ≤y≤1 } and f(x, y) = xy then evaluate f(x, y)d using the Type II technique. 1.2 1.0 0.8 y 0.6 0.4 0.2 0- -0.2 0 0.5 1 1.5 2 X X This plot is an example of the function over region D. The region identified in your problem will be slightly different. y upper integration limit Integral Valuearrow_forward
- This way the ratio test was done in this conflicts what I learned which makes it difficult for me to follow. I was taught with the limit as n approaches infinity for (an+1)/(an) = L I need to find the interval of convergence for the series tan-1(x2). (The question has a table of Maclaurin series which I followed as well) https://www.bartleby.com/solution-answer/chapter-92-problem-7e-advanced-placement-calculus-graphical-numerical-algebraic-sixth-edition-high-school-binding-copyright-2020-6th-edition/9781418300203/2c1feea0-c562-4cd3-82af-bef147eadaf9arrow_forwardSuppose that f(x, y) = y√√r³ +1 on the domain D = {(x, y) | 0 ≤y≤x≤ 1}. D Then the double integral of f(x, y) over D is [ ], f(x, y)dzdy =[ Round your answer to four decimal places.arrow_forwardConsider the function f(x) = 2x² - 8x + 3 over the interval 0 ≤ x ≤ 9. Complete the following steps to find the global (absolute) extrema on the interval. Answer exactly. Separate multiple answers with a comma. a. Find the derivative of f (x) = 2x² - 8x+3 f'(x) b. Find any critical point(s) c within the intervl 0 < x < 9. (Enter as reduced fraction as needed) c. Evaluate the function at the critical point(s). (Enter as reduced fraction as needed. Enter DNE if none of the critical points are inside the interval) f(c) d. Evaluate the function at the endpoints of the interval 0 ≤ x ≤ 9. f(0) f(9) e. Based on the above results, find the global extrema on the interval and where they occur. The global maximum value is at a The global minimum value is at xarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





