(a)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form
Answer to Problem 1.69P
The hybridization and geometry of
is sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.1
In the given compound (Fig.1), the central atom is carbon. It is surrounding by 3 atoms and a lone pair. So the geometry is tetrahedral. Number of groups present around the carbon atom is 4 so the hybridization is sp3.
The geometry is tetrahedral and the hybridization is sp3.
(b)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is nitrogen = sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.2
In the given compound (Fig.2), the central atom is carbon. Carbon is surrounding by 4 atoms. So the geometry is tetrahedral. Number of groups present around the nitrogen atom is 4 so the hybridization is sp3.
The geometry of carbon is tetrahedral and the hybridization is sp3.
(c)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.3
In the given compound (Fig.3), the central atom is oxygen. It is surrounding by 3 atoms and a lone pair. So the geometry is tetrahedral. Number of groups present around the oxygen atom is 4 so the hybridization is sp3.
The geometry is tetrahedral and the hybridization is sp3.
(d)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is sp3 and tetrahedral
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.4
In the given compound(Fig.4), the central atom is carbon. It is surrounding by 4 atoms. So the geometry is tetrahedral. Number of groups present around the carbon atom is 4 so the hybridization is sp3.
The geometry is tetrahedral and the hybridization is sp3.
(e)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is sp and linear
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.5
In the given compound (Fig.5), the central atom is carbon. It is surrounding by 2 atoms. So the geometry is linear. Number of groups present around the carbon atom is 2 so the hybridization is sp.
The geometry is linear and the hybridization is sp.
(f)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is nitrogen = sp2 and trigonal planar
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.6
In the given compound (Fig.6), the central atom is nitrogen. Nitrogen is surrounding by 2 atoms and a lone pair. So the geometry is trigonal planar. Number of groups present around the nitrogen atom is 3 so the hybridization is sp2.
The geometry of nitrogen is trigonal planar and the hybridization is sp2.
(g)
Interpretation:
To predict the hybridization and geometry around each indicated atom.
Concept introduction:
Molecular geometry is the three dimensional shape that a molecule in space. It is determine by considering the central atom and the surrounding atom and electron pairs. The shape of the molecule is determined by using Valence Shell Electron Pair Repulsion method. Some of the most common shapes that can be determined by this method are linear, tetrahedral, trigonal planar and pyramidal.
For example.,
Linear (angle = 180o)
Trigonal planar (angle = 120o)
Tetrahedral (angle = 109.5o)
Hybridization is the concept of mixing atomic orbital into new hybrid orbitals suitable for the electron pairing to form chemical bonds and valence bonds in other words mixing of two new orbital having same energy and shape. The orbital is called the hybrid orbital and the process is the hybridization. For example mixing s-orbital and p-orbital to form new hybridization is called sp-hybridization.
Answer to Problem 1.69P
The hybridization and geometry of
is carbon-a = sp2 and trigonal planar
carbon-b = sp and linear
Explanation of Solution
For the hybridization, count the number of groups present around each atom. For example 4 groups = sp3, 3 groups = sp2, 2 groups = sp. And for the geometry count the surrounding atoms and lone pairs.
Fig.7
In the given compound (Fig.7), the central atom is carbon. The given structure has two carbons. Carbon-a is surrounding by 3 atoms. So the geometry is trigonal planar. Number of groups present around the carbon atom is 3 so the hybridization is sp2.
Carbon-b is surrounding by 2 atoms. So the geometry is linear. Number of groups present around the carbon atom is 2 so the hybridization is sp.
The geometry of carbon-a is trigonal planar and the hybridization is sp2. The geometry of carbon-b is linear and the hybridization is sp.
Want to see more full solutions like this?
Chapter 1 Solutions
Organic Chemistry-Package(Custom)
- Please correct answer and don't used hand raitingarrow_forwardhello, this is about physical chemistry . can you help me please?arrow_forwardPROBLEM 5+ What is the major product of each of the following reactions? a. CH3CH2CHCH3 + HBr d. + HBr A OH OH CH3 CH3 e. b. -OH + HCI + HCl A, OH CH3 OH CH3 c. CH3C CHCH3 + HBr CH3 OH f. CHCH3 + HCl ^>arrow_forward
- One suggestion for solving the fuel shortage due to decreasing volumes of fossil fuels are hydrogen / oxygen fuel cells. a. State the two half-cell reaction equations for such fuel cells. Calculate the cell potential as well as the electrical work gained by this fuel cell at standard conditions with E002/H20 = 1.229 V. b. Compare the fuel cell to the Gibbs free energy of the combustion reaction of n-octane at standard conditions. Use ASºm, n-Oct., 1 = 361.2 J/mol K.arrow_forwarda. Determine the electrochemical potential of the following cell using E°Mg2+/Mg = -2.362 V. Mg | Mg2+ (a=104) || H* (a = 4) | H2 (p = 0.5 bar) | Pt b. A galvanic chain consists of Co²+ / Co and Ag+ / Ag half-cells with EºCo²+/Co = -0.282 V and Eº Ag+/Ag = 0.799 V. Determine which half-cell will be reduced and which one will be oxidised. Furthermore, calculate the electrochemical potential as well as the equilibrium constant of the whole cell at i. [Co²+] = 0.1 M and [Ag+] = 0.5 M ii. [Co²+] = 0.001 M and [Ag*] = 1.5 Marrow_forwardThe equilibrium voltage of the following cell has been measured at 0.522 V at 25 °C. Pt | H2, g❘ HClaq || AgClaq | Ags State the redox reactions present in this cell. Calculate the pH value of the electrolyte solution with KL, AgCl = 1.96 · 10-10 mol² / L². Assume that the concentrations of H+ and Clare equal.arrow_forward
- Here are the energies (in kcal/mol) for staggered and eclipsed interactions for CH, CC, and CBr bonds eclipsed (0°) staggered (60°) bonds CH/CH 1.0 0.0 CH/CC 1.3 0.0 Br: CC/CC 3.0 0.9 Br CH/CBr 1.8 0.0 CC / CBr 3.3 1.0 CBr / CBr 3.7 1.2 a) I've drawn the Newman projection for one of the staggered conformations of the molecule above, looking down the C2-C3 bond. Draw Newman projections for the other two staggered and the three eclipsed conformations (in order). CH₂ H3C. H' H Br b) Calculate the relative energies for each of the conformations and write them below each conformation.arrow_forward90. Draw the stereoisomers obtained from each of the following reactions: a. H₂ b. H₂ C. H₂ Pd/C Pd/C Pd/Carrow_forward36. The emission spectrum below for a one-electron (hydrogen-like) species in the gas phase shows all the lines, before they merge together, resulting from transitions to the first excited state from higher energy states. Line A has a wavelength of 434 nm. BA Increasing wavelength, λ (a) What are the upper and lower principal quantum numbers corresponding to the lines labeled A and B? (b) Identify the one-electron species that exhibits the spectrum.arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning