University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 12CQ
The most common type of mirage is an illusion that light from faraway objects is reflected by a pool of water that is not really there. Mirages are generally observed in deserts, 1en there is a hot layer of air near the ground. Given that the refractive index of air is lower for air at higher temperatures, explain how mirages can be formed.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A type of mirage called a pingo is often observed in Alaska. Pingos occur when the light from a small hill passes to an observer by a path that takes the light over a body of water warmer than the air. What is seen is the hill and an inverted image directly below it. Explain how these mirages are formed.
What is the angle of incidence on an air-to-glass boundary if the angle of refraction in the glass (n= 1.52) is 25º?
A solid, transparent plastic cube has sides with a length of 5.21 cm. At the center of the cube is a small, colored bead. When viewed straight on, the appears to be a
distance of 3.43 cm from the edge of the cube. What is the index of refraction regaring the solid plastic material. Assume that you are viewing it whle in air.
Chapter 1 Solutions
University Physics Volume 3
Ch. 1 - Check Your Understanding Table 1.1 shows that...Ch. 1 - Check Your Understanding In Table 1.1, the solid...Ch. 1 - Check Your Understanding At the surface between...Ch. 1 - Check Your Understanding In the preceding example....Ch. 1 - Check Your Understanding in Example 1.6, we had...Ch. 1 - Check Your Understanding Although we did no...Ch. 1 - Check Your Understanding What happens at...Ch. 1 - Under what conditions can light be modeled like a...Ch. 1 - Why is the index of refraction always greater than...Ch. 1 - Does the fact that the light flash from lightning...
Ch. 1 - Speculate as to s1at physical process might be...Ch. 1 - Using the law of reflection, explain how powder...Ch. 1 - Diffusion by reflection from a rough surface is...Ch. 1 - Will 1igt change direction toward or away from the...Ch. 1 - Exp1ain why an object in water always appears to...Ch. 1 - Explain why a person’s legs appear very short when...Ch. 1 - Explain why an oar that is partially submerged in...Ch. 1 - A ring with a colorless gemstone is dropped into...Ch. 1 - The most common type of mirage is an illusion that...Ch. 1 - How can you use total internal reflection to...Ch. 1 - Is it possible that total internal reflection...Ch. 1 - A high-quality diamond may be quite clear and...Ch. 1 - How do wave effects depend on the size of the...Ch. 1 - Does Huygens’s principle apply to all types of...Ch. 1 - If diffraction is observed for some phenomenon, it...Ch. 1 - Can a sound wave in air be polarized? Explain.Ch. 1 - No light passes through two perfect polarizing...Ch. 1 - Explain what happens to the energy carried by...Ch. 1 - When particles scattering light are much smaller...Ch. 1 - Using the information given in the preceding...Ch. 1 - When light is reflected at Brewster’s angle from a...Ch. 1 - If you lie on a beach looking at the water with...Ch. 1 - What is the speed of light in water? In glycerine?Ch. 1 - What is the speed of light in air? In crown glass?Ch. 1 - Calculate the index of refraction for a medium in...Ch. 1 - In what substance in Table 1.1 is the speed of...Ch. 1 - There was a major collision of an asteroid with...Ch. 1 - Components of some computers communicate with each...Ch. 1 - Compare the time it takes for light to travel 1000...Ch. 1 - How far does light travel underwater during a time...Ch. 1 - Suppose a man stands in front of a mm-or as show...Ch. 1 - Show that when light reflects from two mirrors...Ch. 1 - On the Moon’s surface, lunar astronauts placed a...Ch. 1 - A flat mirror Is neither converging nor diverging....Ch. 1 - A light beam in air has an angle of incidence of...Ch. 1 - A light beam in air is incident on the surface of...Ch. 1 - When a light ray crosses from water into glass, it...Ch. 1 - A pencil flashlight submerged in water sends a...Ch. 1 - Light rays from the Sun make a 30° angle to the...Ch. 1 - The path of a light beam in air goes from an angle...Ch. 1 - A scuba diver training in a pool looks at his...Ch. 1 - (a) Using information in the preceding problem,...Ch. 1 - Verify that the critical angle for light going...Ch. 1 - (a) At the end of Example 1.4, it was stated that...Ch. 1 - An optical fiber uses flint glass clad with crown...Ch. 1 - At that minimum angle will you get total internal...Ch. 1 - Suppose you are using total internal reflection to...Ch. 1 - You can determine the index of refraction of a...Ch. 1 - A ray of light, emitted beneath the surface of an...Ch. 1 - Light rays fall normally on the vertical surface...Ch. 1 - (a) What is the ratio of the speed of red light to...Ch. 1 - A beam of white light goes from air into water at...Ch. 1 - By how much do the critical angles for red (660...Ch. 1 - (a) A narrow beam of light containing yellow (580...Ch. 1 - A parallel beam of light containing orange (610...Ch. 1 - A ray of 610-nm light goes from air into fused...Ch. 1 - A narrow beam of light containing red (660 nm) and...Ch. 1 - A narrow beam of white light enters a prism made...Ch. 1 - What angle is needed between the direction of...Ch. 1 - The angle been the axes of two polarizing filters...Ch. 1 - Two polarizing sheets P1 and P2 are placed...Ch. 1 - Suppose that in the preceding problem the light...Ch. 1 - If you have completely polarized light of...Ch. 1 - What angle would the axis of a polarizing filter...Ch. 1 - At the end of Example 17, it was stated that the...Ch. 1 - Show that if you have three polarizing filters,...Ch. 1 - Three polarizing sheets are placed together such...Ch. 1 - In order to rotate the polarization axis of a beam...Ch. 1 - It is found that when light traveling in water...Ch. 1 - At what angle ill lig1t reflected from diamond be...Ch. 1 - What is Brewster’s angle for light traveling in...Ch. 1 - A scuba diver sees light reflected from the...Ch. 1 - From his measurements, Roemer estimated that it...Ch. 1 - Cornu performed Fizeau’s measurement of the speed...Ch. 1 - Suppose you have an unknown clear substance...Ch. 1 - Shown below is a ray of light going from air...Ch. 1 - Considering the previous problem, show that 3is...Ch. 1 - At what angle is light inside crown glass...Ch. 1 - Light reflected at 55.6° from a window is...Ch. 1 - (a) Light reflected at 62.5° from a gemstone in a...Ch. 1 - If bis Brewster’s angle for light reflected from...Ch. 1 - Unreasonable results Suppose light travels from...Ch. 1 - Unreasonable results Light traveling from water to...Ch. 1 - If a polarizing filter reduces the intensity of...Ch. 1 - Suppose you put on two pairs of polarizing...Ch. 1 - (a) On a day when the intensity of sunlight is...Ch. 1 - Light shows staged with lasers use moving mirrors...Ch. 1 - Consider sunlight entering Earth’s atmosphere at...Ch. 1 - A light ray entering an optical fiber surrounded...Ch. 1 - A light ray falls on the left face of a prism (see...Ch. 1 - If the apex angle in the previous problem is 20.0°...Ch. 1 - The light incident on polarizing sheet P1is...Ch. 1 - Prove that if I is the intensity of light...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A dolphin in an aquatic show jumps straight up out of the water at a velocity of 13.0 m/s. (a) List the knowns ...
College Physics
27. (Il) A projectile is fired with an initial speed of 36.6 m/s at an angle of 42.20 above the horizontal on a...
Physics: Principles with Applications
If acceleration is proportional to the net force or is equal to net force.
Conceptual Physics (12th Edition)
1. A cyclist goes around a level, circular track at constant speed. Do you agree or disagree with the following...
College Physics: A Strategic Approach (4th Edition)
Apply the junction rule to Junction b shown below. Is any new information gained by applying the junction rule ...
University Physics Volume 2
2. Julie drives 100 mi to Grandmother’s house. On the way to Grandmother’s, Julie drives half the distance at 4...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The two mirrors illustrated in the figure below meet at a right angle. The beam of light in the vertical plane indicated by the dashed lines strikes mirror 1 as shown. (Let d = 1.40 m and 0 = 36.0°.) Mirror 2 d m Mirror 1 (a) Determine the distance the reflected light beam travels before striking mirror 2. (b) In what direction does the light beam travel after being reflected from mirror 2? ° above the horizontalarrow_forwardirections: Fill in the blanks in the sentence below. Below each paragraph are words corresponding on e properties and behavior of light that you will encounter in this module. Write your answer on a ean sheet of paper. Light is a natural agent that stimulates sight and make things possible. it is a type of energy known as 1. is given out by luminous objects such as the sun, light bulbs and laser. It is made up of littie packets of energy called 2. Light travels as waves. But unlike sound waves, it does not need any material It a to carry its energy along. This means that light can travel through a 3. completely airless space. Light waves travel out from their source in a straight lines called 4. vacuum photons rays electromagnetic radiationarrow_forwardQ2: Light in a material with an index of refraction of 1.57 is refracted into air, at an angle of refraction of 56". (a) What is the angle of incidence? (b) What is the speed of light in material? Q3 :A beam of light passes through a block of glass 10.0 cm thick, then through water for a distance of 30.5 cm, and finally through another block of glass 5.0 cm thick. If the refractive index of both pieces of glass is 1.5250 and of water is 1.3330, find the total optical path. Q4 : Write and draw how the total internal reflection happens and the conditions. 6 1 a 6:06arrow_forward
- When you observe a mirage on a hot day, what are you actually seeing when you gaze at the "pool of water" in the distance?arrow_forwardSubject: phyarrow_forward7. Consider light incident on a boundary between two materials like the figure below. Several scenarios are listed in the table. A B C D E F a. For which scenarios (A-F) below is total internal reflection possible? b. For the scenarios that are possible rank them based on the minimum angle at which total internal reflection occurs. Material 1 (n1) Air (1.00) Water (1.33) Diamond (2.42) Air (1.00) Benzene (1.50) Diamond (2.42) Material 2 (n2) Water (1.33) Air (1.00) Air (1.00) Quartz (1.46) Water (1.33) Water (1.33) n1 112arrow_forward
- Building contractors often install double-glazed windows to prevent thermal energy (heat) from entering or exiting a building. In addition to being effective insulators, such windows present interesting optical effects. glass In the figure, a double-glazed window consists of two identical 1.54), each yg panes of glass (ng 32.0 mm thick, air separated by an air gap of ya = 25.6 mm. If light incident on a the glass makes an angle of o = 40.00° with respect to the glass, find the shift in path Ax as the light enters the room. Use y glass Na = 1.00 for the index of refraction of air. Ax = mmarrow_forwardWith reference to Mirage, which among the following statements is / are correct? 1.The refractive index of hot air is greater than cold air 2.When light rays pass from hotter to cooler layers of air, they curve downward 3.The phenomenon of Superior mirage is most commonly found in polar regions Choose the correct option from the codes given below: [A] Only 1 & 2 [B] Only 2 & 3 [C] Only 1 & 3 [D] 1, 2 & 3arrow_forwardDesign an eye for a(n) using a concave spherical mirror such that the image of an object 1.0 m tall and 10 m away fully fills its 1.0-cm square photosensitive detector (which is movable for focusing purposes). Where should this detector be located with respect to the mirror? What should be the focal length of the mirror? Draw a ray diagram.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY