Consider sunlight entering Earth’s atmosphere at sunrise and sunset—that is, at
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
University Physics Volume 3
Additional Science Textbook Solutions
Human Anatomy & Physiology (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Campbell Biology in Focus (2nd Edition)
Microbiology: An Introduction
Anatomy & Physiology (6th Edition)
Chemistry: The Central Science (14th Edition)
- Light traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardLight is incident on a prism as shown in Figure P38.31. The prism, an equilateral triangle, is made of plastic with an index of refraction of 1.46 for red light and 1.49 for blue light. Assume the apex angle of the prism is 60.00. a. Sketch the approximate paths of the rays for red and blue light as they travel through and then exit the prism. b. Determine the measure of dispersion, the angle between the red and blue rays that exit the prism. Figure P38.31arrow_forwardA light ray is incident on an interface between water (n = 1.333) and air (n = 1.0002926) from within the air. If the angle of incidence in the air is 30.0, what is the angle of the refracted ray in the water?arrow_forward
- How can you use total internal reflection to estimate the index of refraction of a medium?arrow_forwardK A light ray with a wavelength of 589 nanometers (produced by a sodium lamp) traveling through air makes an angle of = to find the angle of refraction, V2 sin 0₁ V₁ y incidence of 55° on a smooth, flat slab of dense flint glass. Use Snell's Law, sin 02 where the index of refraction is 1.66. ... The angle of refraction is approximately degrees. (Type an integer or decimal rounded to two decimal places as needed.)arrow_forwardA ray of light travels from glass to air with an incident angle of 37° from the normal. What is the refraction angle? Assume nglass= 1.50 and nair = 1.00.arrow_forward
- The index of refraction for a certain type of glass is 1.641 for blue light and 1.603 for red light. A beam of white light (one that contains all colors) enters a plate of glass from the air, nair x 1, at an incidence angle of 35.05°. What is the absolute value of ő, the angle in the glass between blue and red parts of the refracted beams? |8| =arrow_forwardYou have a beaker with a layer of olive oil floating on top of water. A ray of light travels through the oil and is incident on the water with an angle of 75.2°. Using the index of refraction of the oil as 1.470 and the index of refraction of water as 1.333, determine the critical angle in oil for the oil-water interface. Oc = Determine if the ray of light refracts into the water or reflects off the oil-water interface back into the oil. O refracts into the water O reflects back into the oilarrow_forwardYour answer is partially correct. The figure shows an optical fiber in which a central plastic core of index of refraction n, = 1.60 is surrounded by a plastic sheath of index of refraction n2 = 1.52. Light can travel along different paths within the central core, leading to different travel times through the fiber. This causes an initially short pulse of light to spread as it travels along the fiber, resulting in information loss. Consider light that travels directly along the central axis of the fiber and light that is repeatedly reflected at the critical angle along the core-sheath interface, reflecting from side to side as it travels down the central core. If the fiber length is 370 m, what is the difference in the travel times along these two routes? NUmber i 98.7 Units nsarrow_forward
- What is the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air? The index of refraction for polystyrene is 1.49arrow_forwardA ray of red light, for which n = 1.54, and a ray of violet light, for which n = 1.59, travel through a piece of glass. They meet right at the boundary between the glass and the air, and emerge into the air as one ray with an angle of refraction of 22.5°. What is the angle between the two rays in the glass?arrow_forwardA light beam strikes a piece of glass with an incident angle of 45.00°. The beam contains two colors: 450.0 nm and an unknown wavelength. The index of refraction for the 450.0-nm light is 1.482. Assume the glass is surrounded by air, which has an index of refraction of 1.000. Determine the index of refraction n, for the unknown wavelength if its refraction angle is 0.6950° greater than that of the 450.0 nm light.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning