![University Physics Volume 3](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_largeCoverImage.gif)
University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 63P
The angle been the axes of two polarizing filters is 45.00. By how much does the second filter reduce the intensity of the light coming through the first?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
No chatgpt pls will upvote
A cylinder with a piston contains 0.153 mol of
nitrogen at a pressure of 1.83×105 Pa and a
temperature of 290 K. The nitrogen may be
treated as an ideal gas. The gas is first compressed
isobarically to half its original volume. It then
expands adiabatically back to its original volume,
and finally it is heated isochorically to its original
pressure.
Part A
Compute the temperature at the beginning of the adiabatic expansion.
Express your answer in kelvins.
ΕΠΙ ΑΣΦ
T₁ =
?
K
Submit
Request Answer
Part B
Compute the temperature at the end of the adiabatic expansion.
Express your answer in kelvins.
Π ΑΣΦ
T₂ =
Submit
Request Answer
Part C
Compute the minimum pressure.
Express your answer in pascals.
ΕΠΙ ΑΣΦ
P =
Submit
Request Answer
?
?
K
Pa
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
Τ
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
Chapter 1 Solutions
University Physics Volume 3
Ch. 1 - Check Your Understanding Table 1.1 shows that...Ch. 1 - Check Your Understanding In Table 1.1, the solid...Ch. 1 - Check Your Understanding At the surface between...Ch. 1 - Check Your Understanding In the preceding example....Ch. 1 - Check Your Understanding in Example 1.6, we had...Ch. 1 - Check Your Understanding Although we did no...Ch. 1 - Check Your Understanding What happens at...Ch. 1 - Under what conditions can light be modeled like a...Ch. 1 - Why is the index of refraction always greater than...Ch. 1 - Does the fact that the light flash from lightning...
Ch. 1 - Speculate as to s1at physical process might be...Ch. 1 - Using the law of reflection, explain how powder...Ch. 1 - Diffusion by reflection from a rough surface is...Ch. 1 - Will 1igt change direction toward or away from the...Ch. 1 - Exp1ain why an object in water always appears to...Ch. 1 - Explain why a person’s legs appear very short when...Ch. 1 - Explain why an oar that is partially submerged in...Ch. 1 - A ring with a colorless gemstone is dropped into...Ch. 1 - The most common type of mirage is an illusion that...Ch. 1 - How can you use total internal reflection to...Ch. 1 - Is it possible that total internal reflection...Ch. 1 - A high-quality diamond may be quite clear and...Ch. 1 - How do wave effects depend on the size of the...Ch. 1 - Does Huygens’s principle apply to all types of...Ch. 1 - If diffraction is observed for some phenomenon, it...Ch. 1 - Can a sound wave in air be polarized? Explain.Ch. 1 - No light passes through two perfect polarizing...Ch. 1 - Explain what happens to the energy carried by...Ch. 1 - When particles scattering light are much smaller...Ch. 1 - Using the information given in the preceding...Ch. 1 - When light is reflected at Brewster’s angle from a...Ch. 1 - If you lie on a beach looking at the water with...Ch. 1 - What is the speed of light in water? In glycerine?Ch. 1 - What is the speed of light in air? In crown glass?Ch. 1 - Calculate the index of refraction for a medium in...Ch. 1 - In what substance in Table 1.1 is the speed of...Ch. 1 - There was a major collision of an asteroid with...Ch. 1 - Components of some computers communicate with each...Ch. 1 - Compare the time it takes for light to travel 1000...Ch. 1 - How far does light travel underwater during a time...Ch. 1 - Suppose a man stands in front of a mm-or as show...Ch. 1 - Show that when light reflects from two mirrors...Ch. 1 - On the Moon’s surface, lunar astronauts placed a...Ch. 1 - A flat mirror Is neither converging nor diverging....Ch. 1 - A light beam in air has an angle of incidence of...Ch. 1 - A light beam in air is incident on the surface of...Ch. 1 - When a light ray crosses from water into glass, it...Ch. 1 - A pencil flashlight submerged in water sends a...Ch. 1 - Light rays from the Sun make a 30° angle to the...Ch. 1 - The path of a light beam in air goes from an angle...Ch. 1 - A scuba diver training in a pool looks at his...Ch. 1 - (a) Using information in the preceding problem,...Ch. 1 - Verify that the critical angle for light going...Ch. 1 - (a) At the end of Example 1.4, it was stated that...Ch. 1 - An optical fiber uses flint glass clad with crown...Ch. 1 - At that minimum angle will you get total internal...Ch. 1 - Suppose you are using total internal reflection to...Ch. 1 - You can determine the index of refraction of a...Ch. 1 - A ray of light, emitted beneath the surface of an...Ch. 1 - Light rays fall normally on the vertical surface...Ch. 1 - (a) What is the ratio of the speed of red light to...Ch. 1 - A beam of white light goes from air into water at...Ch. 1 - By how much do the critical angles for red (660...Ch. 1 - (a) A narrow beam of light containing yellow (580...Ch. 1 - A parallel beam of light containing orange (610...Ch. 1 - A ray of 610-nm light goes from air into fused...Ch. 1 - A narrow beam of light containing red (660 nm) and...Ch. 1 - A narrow beam of white light enters a prism made...Ch. 1 - What angle is needed between the direction of...Ch. 1 - The angle been the axes of two polarizing filters...Ch. 1 - Two polarizing sheets P1 and P2 are placed...Ch. 1 - Suppose that in the preceding problem the light...Ch. 1 - If you have completely polarized light of...Ch. 1 - What angle would the axis of a polarizing filter...Ch. 1 - At the end of Example 17, it was stated that the...Ch. 1 - Show that if you have three polarizing filters,...Ch. 1 - Three polarizing sheets are placed together such...Ch. 1 - In order to rotate the polarization axis of a beam...Ch. 1 - It is found that when light traveling in water...Ch. 1 - At what angle ill lig1t reflected from diamond be...Ch. 1 - What is Brewster’s angle for light traveling in...Ch. 1 - A scuba diver sees light reflected from the...Ch. 1 - From his measurements, Roemer estimated that it...Ch. 1 - Cornu performed Fizeau’s measurement of the speed...Ch. 1 - Suppose you have an unknown clear substance...Ch. 1 - Shown below is a ray of light going from air...Ch. 1 - Considering the previous problem, show that 3is...Ch. 1 - At what angle is light inside crown glass...Ch. 1 - Light reflected at 55.6° from a window is...Ch. 1 - (a) Light reflected at 62.5° from a gemstone in a...Ch. 1 - If bis Brewster’s angle for light reflected from...Ch. 1 - Unreasonable results Suppose light travels from...Ch. 1 - Unreasonable results Light traveling from water to...Ch. 1 - If a polarizing filter reduces the intensity of...Ch. 1 - Suppose you put on two pairs of polarizing...Ch. 1 - (a) On a day when the intensity of sunlight is...Ch. 1 - Light shows staged with lasers use moving mirrors...Ch. 1 - Consider sunlight entering Earth’s atmosphere at...Ch. 1 - A light ray entering an optical fiber surrounded...Ch. 1 - A light ray falls on the left face of a prism (see...Ch. 1 - If the apex angle in the previous problem is 20.0°...Ch. 1 - The light incident on polarizing sheet P1is...Ch. 1 - Prove that if I is the intensity of light...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Describe the 1H NMR spectrum you would expect for each of the following compounds, indicating the relative posi...
Organic Chemistry (8th Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
MAKE CONNECTIONS Review the description of meiosis (see Figure 10.8) and Mendels laws of segregation and indepe...
Campbell Biology in Focus (2nd Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Learning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. T One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forward■ Review | Constants A cylinder with a movable piston contains 3.75 mol of N2 gas (assumed to behave like an ideal gas). Part A The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in temperature. ΜΕ ΑΣΦ AT = Submit Request Answer Part B ? K Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while remaining at constant pressure. Calculate the temperature change. AT = Π ΑΣΦ Submit Request Answer Provide Feedback ? K Nextarrow_forward4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC) into a rectangle, bringing them together from an initial situation where they were all an infinite distance away from each other. Find the electric potential at point "A" (marked by the X) and tell me how much work it would require to bring a +10.0 μC charge to point A if it started an infinite distance away (assume that the other three charges remains fixed). 300 mm -4 UC "A" 0.400 mm +6 UC +3 UC 5. It's Friday night, and you've got big party plans. What will you do? Why, make a capacitor, of course! You use aluminum foil as the plates, and since a standard roll of aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by 30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125 mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If you connect it to a 12 V battery, how much charge is stored on either plate? =arrow_forward
- Learning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, PV T = constant. One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forwardA-e pleasearrow_forwardTwo moles of carbon monoxide (CO) start at a pressure of 1.4 atm and a volume of 35 liters. The gas is then compressed adiabatically to 1/3 this volume. Assume that the gas may be treated as ideal. Part A What is the change in the internal energy of the gas? Express your answer using two significant figures. ΕΠΙ ΑΣΦ AU = Submit Request Answer Part B Does the internal energy increase or decrease? internal energy increases internal energy decreases Submit Request Answer Part C ? J Does the temperature of the gas increase or decrease during this process? temperature of the gas increases temperature of the gas decreases Submit Request Answerarrow_forward
- Your answer is partially correct. Two small objects, A and B, are fixed in place and separated by 2.98 cm in a vacuum. Object A has a charge of +0.776 μC, and object B has a charge of -0.776 μC. How many electrons must be removed from A and put onto B to make the electrostatic force that acts on each object an attractive force whose magnitude is 12.4 N? e (mea is the es a co le E o ussian Number Tevtheel ed Media ! Units No units → answe Tr2Earrow_forward4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forward4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079137/9781305079137_smallCoverImage.gif)
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY