The light incident on polarizing sheet
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
University Physics Volume 3
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
Biology: Life on Earth (11th Edition)
Microbiology with Diseases by Body System (5th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Campbell Essential Biology (7th Edition)
Chemistry: The Central Science (14th Edition)
- Two polarizing sheets P1 and P2 are placed together with their transmission axes oriented at an angle to each other. What is when only 25% of the maximum transmitted light intensity passes through them?arrow_forwardThree polarizing sheets are placed together such that the transmission axis of the second sheet is oriented at 25.0° to the axis of the first, whereas the transmission axis of the third sheet is oriented at 40.0° (in the same sense) to the axis of the first. What fraction of an intensity of an incident unpolarized beam is transmitted by the combination?arrow_forwardA linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forward
- In Figure P37.52, suppose the transmission axes of the left and right polarizing disks are perpendicular to each other. Also, let the center disk be rotated on the common axis with an angular speed . Show that if unpolarized light is incident on the left disk with an intensity Imax, the intensity of the beam emerging from the right disk is I=116Imax(1cos4t) This result means that the intensity of the emerging beam is modulated at a rate four times the rate of rotation of the center disk. Suggestion: Use the trigonometric identities cos2=12(1+cos2) and sin2=12(1cos2). Figure P37.52arrow_forwardIf you have completely polarized light of intensity 150 W/m2 , what will its intensity be after passing through a polarizing filter with its axis at an 89.0 angle to the light’s polarization direction?arrow_forwardIf a polarizing filter reduces the intensity of polarized light to 50.0% of its original value, by how much are the electric and magnetic fields reduced?arrow_forward
- An unpolarized beam of light is incident on a stack of ideal polarizing filters. The axis of the first filter is perpendicular to the axis of the last filter in the stack. Find the fraction by which the transmitted beams intensity is reduced in the three following cases. (a) Three filters are in the stack, each with its transmission axis at 45.0 relative to the preceding filter. (b) Four filters are in the stack, each with its transmission axis at 30.0 relative to the preceding filter. (c) Seven filters are in the stack, each with its transmission axis at 15.0 relative to the preceding filter. (d) Comment on comparing the answers to parts (a), (b), and (c).arrow_forwardAstronomers observe the chromosphere of the Sun with a filter that passes the red hydrogen spectral line of wavelength 656.3 nm, called the H line. The filter consists of a transparent dielectric of thickness d held between two partially aluminized glass plates. The filter is held at a constant temperature. (a) Find the minimum value of d that produces maximum transmission of perpendicular H light if the dielectric has an index of refraction of 1.378. (b) What If? If the temperature of the filter increases above the normal value, increasing its thickness, what happens to the transmitted wavelength? (c) The dielectric will also pass what near-visible wavelength? One of the glass plates is colored red to absorb this light.arrow_forwardUnpolarized light in vacuum is incident onto a sheet of glass with index of refraction n. The reflected and refracted rays are perpendicular to each other. Find the angle of incidence. This angle is called Brewsters angle or the polarizing angle. In this situation, the reflected light is linearly polarized, with its electric field restricted to be perpendicular to the plane containing the rays and the normal.arrow_forward
- To save money on making military aircraft invisible to radar, an inventor decides to coat them with a nonreflective material having an index of refraction of 1.20, which is between that of air and the surface of the plane. This, he reasons, should be much cheaper than designing Stealth bombers. (a) What thickness should the coating be to inhibit the reflection of 4.00-cm wavelength radar? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardAn unpolarized light with an initial intensity of ?0 is incident on two polarizers.What must be the angle between the transmission axes of the two polarizers for the intensity of light to be 3/8 of ?0 after passing through the second polarizer?arrow_forwardA system of three polarizing sheets is placed in the path of initially unpolarized light. The polarizing direction of the first sheet, P1, is parallel to the y-axis, that of the second sheet, P2, is 60o counterclockwise from the y-axis, and that of the third sheet, P3, is parallel to the x-axis. Determine the fraction of the initial intensity Io of the light emerges from the system, i.e. ratio I0/I3. A. 0.092 B. 3.19 C. 10.9 D. 6.66arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning