University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 58P
A parallel beam of light containing orange (610 nm)
and violet (4.10wm) wavelengths goes from fused quartz
to water, striking the surface between them at a 60.00 incident angle. What is the angle between the two colors in water?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The refractive index of the standard blue (λ = 486.1 nm) and red (λ = 656.3 nm) hydrogen lines in extra-dense flint are 1.74 and 1.71, respectively. If white light strikes the flint surface in air at an angle of θ=30 degrees, what is the angular separation between the two colors?
A ray of white light traveling through air enters a block of glass that has an index of refraction of 1.44 for the red end of the spectrum and 1.46 for the violet end. If the ray has an angle of incidence of 60.0 degrees with respect to the normal of the interface boundary, what's the angular separation between the red and violet ends of the spectrum within the glass?
The index of refraction of silicate flint glass for red light is 1.620 and for violet light is 1.660. A beam of white light in this glass
strikes the glass-air interface at a 28.30° angle of incidence and refracts out into the air.
What is the angular separation A between the red and violet
components of the spectrum that emerges from the glass?
A0=
Chapter 1 Solutions
University Physics Volume 3
Ch. 1 - Check Your Understanding Table 1.1 shows that...Ch. 1 - Check Your Understanding In Table 1.1, the solid...Ch. 1 - Check Your Understanding At the surface between...Ch. 1 - Check Your Understanding In the preceding example....Ch. 1 - Check Your Understanding in Example 1.6, we had...Ch. 1 - Check Your Understanding Although we did no...Ch. 1 - Check Your Understanding What happens at...Ch. 1 - Under what conditions can light be modeled like a...Ch. 1 - Why is the index of refraction always greater than...Ch. 1 - Does the fact that the light flash from lightning...
Ch. 1 - Speculate as to s1at physical process might be...Ch. 1 - Using the law of reflection, explain how powder...Ch. 1 - Diffusion by reflection from a rough surface is...Ch. 1 - Will 1igt change direction toward or away from the...Ch. 1 - Exp1ain why an object in water always appears to...Ch. 1 - Explain why a person’s legs appear very short when...Ch. 1 - Explain why an oar that is partially submerged in...Ch. 1 - A ring with a colorless gemstone is dropped into...Ch. 1 - The most common type of mirage is an illusion that...Ch. 1 - How can you use total internal reflection to...Ch. 1 - Is it possible that total internal reflection...Ch. 1 - A high-quality diamond may be quite clear and...Ch. 1 - How do wave effects depend on the size of the...Ch. 1 - Does Huygens’s principle apply to all types of...Ch. 1 - If diffraction is observed for some phenomenon, it...Ch. 1 - Can a sound wave in air be polarized? Explain.Ch. 1 - No light passes through two perfect polarizing...Ch. 1 - Explain what happens to the energy carried by...Ch. 1 - When particles scattering light are much smaller...Ch. 1 - Using the information given in the preceding...Ch. 1 - When light is reflected at Brewster’s angle from a...Ch. 1 - If you lie on a beach looking at the water with...Ch. 1 - What is the speed of light in water? In glycerine?Ch. 1 - What is the speed of light in air? In crown glass?Ch. 1 - Calculate the index of refraction for a medium in...Ch. 1 - In what substance in Table 1.1 is the speed of...Ch. 1 - There was a major collision of an asteroid with...Ch. 1 - Components of some computers communicate with each...Ch. 1 - Compare the time it takes for light to travel 1000...Ch. 1 - How far does light travel underwater during a time...Ch. 1 - Suppose a man stands in front of a mm-or as show...Ch. 1 - Show that when light reflects from two mirrors...Ch. 1 - On the Moon’s surface, lunar astronauts placed a...Ch. 1 - A flat mirror Is neither converging nor diverging....Ch. 1 - A light beam in air has an angle of incidence of...Ch. 1 - A light beam in air is incident on the surface of...Ch. 1 - When a light ray crosses from water into glass, it...Ch. 1 - A pencil flashlight submerged in water sends a...Ch. 1 - Light rays from the Sun make a 30° angle to the...Ch. 1 - The path of a light beam in air goes from an angle...Ch. 1 - A scuba diver training in a pool looks at his...Ch. 1 - (a) Using information in the preceding problem,...Ch. 1 - Verify that the critical angle for light going...Ch. 1 - (a) At the end of Example 1.4, it was stated that...Ch. 1 - An optical fiber uses flint glass clad with crown...Ch. 1 - At that minimum angle will you get total internal...Ch. 1 - Suppose you are using total internal reflection to...Ch. 1 - You can determine the index of refraction of a...Ch. 1 - A ray of light, emitted beneath the surface of an...Ch. 1 - Light rays fall normally on the vertical surface...Ch. 1 - (a) What is the ratio of the speed of red light to...Ch. 1 - A beam of white light goes from air into water at...Ch. 1 - By how much do the critical angles for red (660...Ch. 1 - (a) A narrow beam of light containing yellow (580...Ch. 1 - A parallel beam of light containing orange (610...Ch. 1 - A ray of 610-nm light goes from air into fused...Ch. 1 - A narrow beam of light containing red (660 nm) and...Ch. 1 - A narrow beam of white light enters a prism made...Ch. 1 - What angle is needed between the direction of...Ch. 1 - The angle been the axes of two polarizing filters...Ch. 1 - Two polarizing sheets P1 and P2 are placed...Ch. 1 - Suppose that in the preceding problem the light...Ch. 1 - If you have completely polarized light of...Ch. 1 - What angle would the axis of a polarizing filter...Ch. 1 - At the end of Example 17, it was stated that the...Ch. 1 - Show that if you have three polarizing filters,...Ch. 1 - Three polarizing sheets are placed together such...Ch. 1 - In order to rotate the polarization axis of a beam...Ch. 1 - It is found that when light traveling in water...Ch. 1 - At what angle ill lig1t reflected from diamond be...Ch. 1 - What is Brewster’s angle for light traveling in...Ch. 1 - A scuba diver sees light reflected from the...Ch. 1 - From his measurements, Roemer estimated that it...Ch. 1 - Cornu performed Fizeau’s measurement of the speed...Ch. 1 - Suppose you have an unknown clear substance...Ch. 1 - Shown below is a ray of light going from air...Ch. 1 - Considering the previous problem, show that 3is...Ch. 1 - At what angle is light inside crown glass...Ch. 1 - Light reflected at 55.6° from a window is...Ch. 1 - (a) Light reflected at 62.5° from a gemstone in a...Ch. 1 - If bis Brewster’s angle for light reflected from...Ch. 1 - Unreasonable results Suppose light travels from...Ch. 1 - Unreasonable results Light traveling from water to...Ch. 1 - If a polarizing filter reduces the intensity of...Ch. 1 - Suppose you put on two pairs of polarizing...Ch. 1 - (a) On a day when the intensity of sunlight is...Ch. 1 - Light shows staged with lasers use moving mirrors...Ch. 1 - Consider sunlight entering Earth’s atmosphere at...Ch. 1 - A light ray entering an optical fiber surrounded...Ch. 1 - A light ray falls on the left face of a prism (see...Ch. 1 - If the apex angle in the previous problem is 20.0°...Ch. 1 - The light incident on polarizing sheet P1is...Ch. 1 - Prove that if I is the intensity of light...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
8. Studies of DNA support which of the following?
a. Members of the group called australopiths were the first t...
Campbell Biology: Concepts & Connections (9th Edition)
1. A cyclist goes around a level, circular track at constant speed. Do you agree or disagree with the following...
College Physics: A Strategic Approach (3rd Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forwardA ray of white light is incident upon a rectangular block of glass with an index of refraction 1.519 for the red end of the spectrum and 1.538 for the violet end. It strikes the interface boundary between the air and glass at an angle of 54.5 degrees. Dispersion takes place and the light proceeds to travel through the glass until reaching the opposite side. What is the thickness of the glass block if the spatial separation of the red and violet ends of the spectrum is 0.028 m at the exit boundary? Answer in meters to 2 decimal places.arrow_forwardThe X-ray powder pattern for a silvery-grey metal has reflections at 0 = 20.25°, 29.30°, 36.82°, 43.81°, 50.69°, 58.00°, 66.30°, and other larger angles when Cu Ka X-rays are used (A = 154.05 pm). (a) What type of cubic crystal is formed by the metal? (b) What is the volume of the metal's unit cell (in cubic Å) at this temperature?arrow_forward
- A beam of white light goes from air into quartz at an angle of incidence of 50°.What is the angle between the red (660 nm) and blue (470 nm) parts of the refracted light?arrow_forwardA ray of white light is incident upon a rectangular block of glass with an index of refraction 1.516 for the red end of the spectrum and 1.534 for the violet end. It strikes the interface boundary between the air and glass at an angle of 64.7 degrees. Dispersion takes place and the light proceeds to travel through the glass until reaching the opposite side. What is the thickness of the glass block if the spatial separation of the red and violet end of the spectrum is 0.011 m at the exit boundary? Round your answer to 2 decimal placesarrow_forwardTwo beams of light start together and then hit a slab of two different kinds of material. This will cause one of the beams to get "ahead" of the other; that is, one will emerge from the slab sooner than the other. The beams have a wavelength of 680 nm outside the slabs, and the slab is d = 1.10 microns thick. If the top half of the slab has index of refraction 1.65 and the bottom has index 1.37, by what time interval will one of the beams be ahead of the other once they've gone through the slab?arrow_forward
- A beam of light is incident at 30° on a piece of glass in air. The dispersion of colors spans 1 mm on the bottom surface of the glass. The thickness of the glass slab is l = 10 cm. The index of refraction for red light is nred = 1.513. Given nviolet > nred· Determine the index of refraction for violet light. 30 1 mm 1.546 O 1.587 1.563 1.553 1.572 O 1.591arrow_forwardA ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80°. What is the angular separation between the refracted red and refracted blue beams while they are in the glass? (The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.) O 0.27° 0.33° O 0.36° O 0.46° O 0.54°arrow_forwardLight from a 560-nm monochromatic source is incident upon the surface of fused quartz (n = 1.56) at an angle of 60º. What is the angle of reflection from the surface?arrow_forward
- Light with a frequency of 453THZ shines down on a layer of oil on top of water. The index of refraction of oil is 1.47. The index of refraction of water is 1.33. Find the minimum thickness of the oil (in nanometers) if the the light is strongly reflected.arrow_forwardA light ray of wavelength 589 nm (produced by a sodium m lamp) travelling through air is incident a smooth, flat slab of crystal (n=2) at an angle 1= 30 degrees to the normal. Calculate the critical angle of crystal if light travels from slab of crystal to air.arrow_forwardA parallel beam of light containing orange (610nm) and violet (410nm) wavelengths goes from fused quartz to water, striking the surface between them at a 60° incident angle. What is the angle between the two colors in water?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY