University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 68P
At the end of Example 17, it was stated that the intensity of polarized light is reduced to 90.0% of its original value by passing through a polarizing filter with its axis at an angle of 18.4° to the direction of polarization. Verify this statement.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A clear sheet of polarizing material is placed on top of a second, similar sheet so that
their polarizing axes make an angle o = (5.45x10^1)° with each other. What is the
ratio of the intensity of emerging light to incident unpolarized light? Express your
answer with three significant figures.
When unpolarised light is passed through a polariser, and then through an analyser with its polarising axis at a right angle to the axis of the polariser, the intensity of the remaining light is approximately zero. When a second polarising sheet is placed between the polariser and the analyser, the final intensity is much brighter and clearly non-zero. Explain how this can happen.
Unpolarized light is sent into a system of three polarizing sheets. The angles θ1, θ2, and θ3 of the polarizing directions is measured counterclockwise from the positive direction of the y axis. Angles θ1 and θ3 are fixed, but angle θ2 can be varied. The figure gives the intensity of the light emerging from sheet 3 as a function of θ2. (a) From the intensity plot, what are the possible orientations of the first and third polarizers? Draw a sketch of the situation. (b) What percentage of the light’s initial intensity is transmitted by the three-sheet system when θ2 = 90°? Answer: 7.3%
Chapter 1 Solutions
University Physics Volume 3
Ch. 1 - Check Your Understanding Table 1.1 shows that...Ch. 1 - Check Your Understanding In Table 1.1, the solid...Ch. 1 - Check Your Understanding At the surface between...Ch. 1 - Check Your Understanding In the preceding example....Ch. 1 - Check Your Understanding in Example 1.6, we had...Ch. 1 - Check Your Understanding Although we did no...Ch. 1 - Check Your Understanding What happens at...Ch. 1 - Under what conditions can light be modeled like a...Ch. 1 - Why is the index of refraction always greater than...Ch. 1 - Does the fact that the light flash from lightning...
Ch. 1 - Speculate as to s1at physical process might be...Ch. 1 - Using the law of reflection, explain how powder...Ch. 1 - Diffusion by reflection from a rough surface is...Ch. 1 - Will 1igt change direction toward or away from the...Ch. 1 - Exp1ain why an object in water always appears to...Ch. 1 - Explain why a person’s legs appear very short when...Ch. 1 - Explain why an oar that is partially submerged in...Ch. 1 - A ring with a colorless gemstone is dropped into...Ch. 1 - The most common type of mirage is an illusion that...Ch. 1 - How can you use total internal reflection to...Ch. 1 - Is it possible that total internal reflection...Ch. 1 - A high-quality diamond may be quite clear and...Ch. 1 - How do wave effects depend on the size of the...Ch. 1 - Does Huygens’s principle apply to all types of...Ch. 1 - If diffraction is observed for some phenomenon, it...Ch. 1 - Can a sound wave in air be polarized? Explain.Ch. 1 - No light passes through two perfect polarizing...Ch. 1 - Explain what happens to the energy carried by...Ch. 1 - When particles scattering light are much smaller...Ch. 1 - Using the information given in the preceding...Ch. 1 - When light is reflected at Brewster’s angle from a...Ch. 1 - If you lie on a beach looking at the water with...Ch. 1 - What is the speed of light in water? In glycerine?Ch. 1 - What is the speed of light in air? In crown glass?Ch. 1 - Calculate the index of refraction for a medium in...Ch. 1 - In what substance in Table 1.1 is the speed of...Ch. 1 - There was a major collision of an asteroid with...Ch. 1 - Components of some computers communicate with each...Ch. 1 - Compare the time it takes for light to travel 1000...Ch. 1 - How far does light travel underwater during a time...Ch. 1 - Suppose a man stands in front of a mm-or as show...Ch. 1 - Show that when light reflects from two mirrors...Ch. 1 - On the Moon’s surface, lunar astronauts placed a...Ch. 1 - A flat mirror Is neither converging nor diverging....Ch. 1 - A light beam in air has an angle of incidence of...Ch. 1 - A light beam in air is incident on the surface of...Ch. 1 - When a light ray crosses from water into glass, it...Ch. 1 - A pencil flashlight submerged in water sends a...Ch. 1 - Light rays from the Sun make a 30° angle to the...Ch. 1 - The path of a light beam in air goes from an angle...Ch. 1 - A scuba diver training in a pool looks at his...Ch. 1 - (a) Using information in the preceding problem,...Ch. 1 - Verify that the critical angle for light going...Ch. 1 - (a) At the end of Example 1.4, it was stated that...Ch. 1 - An optical fiber uses flint glass clad with crown...Ch. 1 - At that minimum angle will you get total internal...Ch. 1 - Suppose you are using total internal reflection to...Ch. 1 - You can determine the index of refraction of a...Ch. 1 - A ray of light, emitted beneath the surface of an...Ch. 1 - Light rays fall normally on the vertical surface...Ch. 1 - (a) What is the ratio of the speed of red light to...Ch. 1 - A beam of white light goes from air into water at...Ch. 1 - By how much do the critical angles for red (660...Ch. 1 - (a) A narrow beam of light containing yellow (580...Ch. 1 - A parallel beam of light containing orange (610...Ch. 1 - A ray of 610-nm light goes from air into fused...Ch. 1 - A narrow beam of light containing red (660 nm) and...Ch. 1 - A narrow beam of white light enters a prism made...Ch. 1 - What angle is needed between the direction of...Ch. 1 - The angle been the axes of two polarizing filters...Ch. 1 - Two polarizing sheets P1 and P2 are placed...Ch. 1 - Suppose that in the preceding problem the light...Ch. 1 - If you have completely polarized light of...Ch. 1 - What angle would the axis of a polarizing filter...Ch. 1 - At the end of Example 17, it was stated that the...Ch. 1 - Show that if you have three polarizing filters,...Ch. 1 - Three polarizing sheets are placed together such...Ch. 1 - In order to rotate the polarization axis of a beam...Ch. 1 - It is found that when light traveling in water...Ch. 1 - At what angle ill lig1t reflected from diamond be...Ch. 1 - What is Brewster’s angle for light traveling in...Ch. 1 - A scuba diver sees light reflected from the...Ch. 1 - From his measurements, Roemer estimated that it...Ch. 1 - Cornu performed Fizeau’s measurement of the speed...Ch. 1 - Suppose you have an unknown clear substance...Ch. 1 - Shown below is a ray of light going from air...Ch. 1 - Considering the previous problem, show that 3is...Ch. 1 - At what angle is light inside crown glass...Ch. 1 - Light reflected at 55.6° from a window is...Ch. 1 - (a) Light reflected at 62.5° from a gemstone in a...Ch. 1 - If bis Brewster’s angle for light reflected from...Ch. 1 - Unreasonable results Suppose light travels from...Ch. 1 - Unreasonable results Light traveling from water to...Ch. 1 - If a polarizing filter reduces the intensity of...Ch. 1 - Suppose you put on two pairs of polarizing...Ch. 1 - (a) On a day when the intensity of sunlight is...Ch. 1 - Light shows staged with lasers use moving mirrors...Ch. 1 - Consider sunlight entering Earth’s atmosphere at...Ch. 1 - A light ray entering an optical fiber surrounded...Ch. 1 - A light ray falls on the left face of a prism (see...Ch. 1 - If the apex angle in the previous problem is 20.0°...Ch. 1 - The light incident on polarizing sheet P1is...Ch. 1 - Prove that if I is the intensity of light...
Additional Science Textbook Solutions
Find more solutions based on key concepts
5. A 65 kg gymnast wedges himself between two closely spaced vertical walls by pressing his hands and feet ag...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
How can the freezing of water crack boulders?
Campbell Biology in Focus (2nd Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
How can 1H NMR distinguish between the compounds in each of the following pairs?
Organic Chemistry (8th Edition)
2 Of the uterus, small intestine, spinal cord, and heart, which is/are in the dorsal body cavity?
Anatomy & Physiology (6th Edition)
Which of the following statements about the general functions of the nervous system is false?
The three primary...
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If you have completely polarized light of intensity 150 W/m2 , what will its intensity be after passing through a polarizing filter with its axis at an 89.0 angle to the light’s polarization direction?arrow_forwardUnpolarized light in vacuum is incident onto a sheet of glass with index of refraction n. The reflected and refracted rays are perpendicular to each other. Find the angle of incidence. This angle is called Brewsters angle or the polarizing angle. In this situation, the reflected light is linearly polarized, with its electric field restricted to be perpendicular to the plane containing the rays and the normal.arrow_forwardIn Figure P37.52, suppose the transmission axes of the left and right polarizing disks are perpendicular to each other. Also, let the center disk be rotated on the common axis with an angular speed . Show that if unpolarized light is incident on the left disk with an intensity Imax, the intensity of the beam emerging from the right disk is I=116Imax(1cos4t) This result means that the intensity of the emerging beam is modulated at a rate four times the rate of rotation of the center disk. Suggestion: Use the trigonometric identities cos2=12(1+cos2) and sin2=12(1cos2). Figure P37.52arrow_forward
- If a polarizing filter reduces the intensity of polarized light to 50.0% of its original value, by how much are the electric and magnetic fields reduced?arrow_forwardAn unpolarized beam of light is incident on a stack of ideal polarizing filters. The axis of the first filter is perpendicular to the axis of the last filter in the stack. Find the fraction by which the transmitted beams intensity is reduced in the three following cases. (a) Three filters are in the stack, each with its transmission axis at 45.0 relative to the preceding filter. (b) Four filters are in the stack, each with its transmission axis at 30.0 relative to the preceding filter. (c) Seven filters are in the stack, each with its transmission axis at 15.0 relative to the preceding filter. (d) Comment on comparing the answers to parts (a), (b), and (c).arrow_forwardThree polarizing sheets are placed together such that the transmission axis of the second sheet is oriented at 25.0° to the axis of the first, whereas the transmission axis of the third sheet is oriented at 40.0° (in the same sense) to the axis of the first. What fraction of an intensity of an incident unpolarized beam is transmitted by the combination?arrow_forward
- What angle is needed between the direction of polarized light and the axis of a polarizing filter to cut its intensity in half?arrow_forwardTo save money on making military aircraft invisible to radar, an inventor decides to coat them with a nonreflective material having an index of refraction of 1.20, which is between that of air and the surface of the plane. This, he reasons, should be much cheaper than designing Stealth bombers. (a) What thickness should the coating be to inhibit the reflection of 4.00-cm wavelength radar? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardThe light incident on polarizing sheet P1is linearly polarized at an angle of 30.00 with respect to the transmission axis of P1 Sheet P2is placed so that its axis is parallel to the polarization axis of the incident light, that is, also at 30.0° with respect to P1 . (a) What fraction of the incident light passes through P1 ? (b) What fraction of the incident light is passed by the combination? (c) By rotating P2 , a maximum in transmitted intensity is obtained. What is the ratio of this maximum intensity to the intensity of transmitted light when P2 is at 30.0° with respect to P1 ?arrow_forward
- Equation 24.14 assumes the incident light is in air. If the light is incident from a medium of index n1 onto a medium of index n2, follow the procedure used to derive Equation 24.14 to show that tan p = n2/n1.arrow_forwardA linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forwardA beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY