University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 17CQ
Does Huygens’s principle apply to all types of waves?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider light passing from air into water.
What is the ratio of its wavelength in water, λw, to its wavelength in air, λa?
30) A vertically polarized wave comes from the air environment at an angle of 30 degrees to the
planar glass-air interface. Wave frequency is 600 THz. (1 THz = 10 ^ 12 Hz). The refractive index of
the glass is 1.6 and the electric field amplitude of the incident wave is 50 V /m. Find the instant
expression of the H area in the glass.
Dik kutuplanmış bir dalga hava ortamından 30 derecelik bir açıyla düzlemsel cam-hava
arayüzüne gelmektedir.Dalga frekansı 600 THz dir (1 THz 1012 Hz) camin kırılma indisi 1.6
ve gelen dalganın elektrik alan genligi ise 50V/m dir. Cam içindeki H alanın anlık ifadesini
bulunuz?
30
až13.5cos(wt-k2zsindt -k2zcost)A/m
O 0.16(-arcos0t-ažcosot)cos(wt - k2zsindt - k2rcos0t)A/m
O - klzsinot - k2xcos0t)A/m
0.16(-ažcost-ažcost)cos(wt
O 3.16(-ažcosot- aycost)cos(ut
- klzsindt- k2rcost)A/m
0.16(-ajcosot-ažcostt)cos(wt
- k2rsindt - k2rcost)A/m
14) The electric field vector of a monochromatic wave (relative parameters ur, er and conductivity
o) in a simple boundless medium is given in the formula. What is the value of the wave number
"k"?
Basit sınırsız bir ortamda monokromatik dalganın (bağıl parametreleri Hr, Er ve iletkenliğ
Elektrik alan vektörü
Ē = e-2* sin(3x – 3.10°t) ẻ,
Olarak verilmiştir. (ɛo~x 10-9 = 8.84X10-12 F/m, Ho = 4x10-7 A/m)
%3D
36n
Dalga sayısı 'k' nın değeri aşağıdakilerden hangisidir
14
O k=3j-12
O k=7
O k=2+5j
O k=3+2j
k=2-5j
Chapter 1 Solutions
University Physics Volume 3
Ch. 1 - Check Your Understanding Table 1.1 shows that...Ch. 1 - Check Your Understanding In Table 1.1, the solid...Ch. 1 - Check Your Understanding At the surface between...Ch. 1 - Check Your Understanding In the preceding example....Ch. 1 - Check Your Understanding in Example 1.6, we had...Ch. 1 - Check Your Understanding Although we did no...Ch. 1 - Check Your Understanding What happens at...Ch. 1 - Under what conditions can light be modeled like a...Ch. 1 - Why is the index of refraction always greater than...Ch. 1 - Does the fact that the light flash from lightning...
Ch. 1 - Speculate as to s1at physical process might be...Ch. 1 - Using the law of reflection, explain how powder...Ch. 1 - Diffusion by reflection from a rough surface is...Ch. 1 - Will 1igt change direction toward or away from the...Ch. 1 - Exp1ain why an object in water always appears to...Ch. 1 - Explain why a person’s legs appear very short when...Ch. 1 - Explain why an oar that is partially submerged in...Ch. 1 - A ring with a colorless gemstone is dropped into...Ch. 1 - The most common type of mirage is an illusion that...Ch. 1 - How can you use total internal reflection to...Ch. 1 - Is it possible that total internal reflection...Ch. 1 - A high-quality diamond may be quite clear and...Ch. 1 - How do wave effects depend on the size of the...Ch. 1 - Does Huygens’s principle apply to all types of...Ch. 1 - If diffraction is observed for some phenomenon, it...Ch. 1 - Can a sound wave in air be polarized? Explain.Ch. 1 - No light passes through two perfect polarizing...Ch. 1 - Explain what happens to the energy carried by...Ch. 1 - When particles scattering light are much smaller...Ch. 1 - Using the information given in the preceding...Ch. 1 - When light is reflected at Brewster’s angle from a...Ch. 1 - If you lie on a beach looking at the water with...Ch. 1 - What is the speed of light in water? In glycerine?Ch. 1 - What is the speed of light in air? In crown glass?Ch. 1 - Calculate the index of refraction for a medium in...Ch. 1 - In what substance in Table 1.1 is the speed of...Ch. 1 - There was a major collision of an asteroid with...Ch. 1 - Components of some computers communicate with each...Ch. 1 - Compare the time it takes for light to travel 1000...Ch. 1 - How far does light travel underwater during a time...Ch. 1 - Suppose a man stands in front of a mm-or as show...Ch. 1 - Show that when light reflects from two mirrors...Ch. 1 - On the Moon’s surface, lunar astronauts placed a...Ch. 1 - A flat mirror Is neither converging nor diverging....Ch. 1 - A light beam in air has an angle of incidence of...Ch. 1 - A light beam in air is incident on the surface of...Ch. 1 - When a light ray crosses from water into glass, it...Ch. 1 - A pencil flashlight submerged in water sends a...Ch. 1 - Light rays from the Sun make a 30° angle to the...Ch. 1 - The path of a light beam in air goes from an angle...Ch. 1 - A scuba diver training in a pool looks at his...Ch. 1 - (a) Using information in the preceding problem,...Ch. 1 - Verify that the critical angle for light going...Ch. 1 - (a) At the end of Example 1.4, it was stated that...Ch. 1 - An optical fiber uses flint glass clad with crown...Ch. 1 - At that minimum angle will you get total internal...Ch. 1 - Suppose you are using total internal reflection to...Ch. 1 - You can determine the index of refraction of a...Ch. 1 - A ray of light, emitted beneath the surface of an...Ch. 1 - Light rays fall normally on the vertical surface...Ch. 1 - (a) What is the ratio of the speed of red light to...Ch. 1 - A beam of white light goes from air into water at...Ch. 1 - By how much do the critical angles for red (660...Ch. 1 - (a) A narrow beam of light containing yellow (580...Ch. 1 - A parallel beam of light containing orange (610...Ch. 1 - A ray of 610-nm light goes from air into fused...Ch. 1 - A narrow beam of light containing red (660 nm) and...Ch. 1 - A narrow beam of white light enters a prism made...Ch. 1 - What angle is needed between the direction of...Ch. 1 - The angle been the axes of two polarizing filters...Ch. 1 - Two polarizing sheets P1 and P2 are placed...Ch. 1 - Suppose that in the preceding problem the light...Ch. 1 - If you have completely polarized light of...Ch. 1 - What angle would the axis of a polarizing filter...Ch. 1 - At the end of Example 17, it was stated that the...Ch. 1 - Show that if you have three polarizing filters,...Ch. 1 - Three polarizing sheets are placed together such...Ch. 1 - In order to rotate the polarization axis of a beam...Ch. 1 - It is found that when light traveling in water...Ch. 1 - At what angle ill lig1t reflected from diamond be...Ch. 1 - What is Brewster’s angle for light traveling in...Ch. 1 - A scuba diver sees light reflected from the...Ch. 1 - From his measurements, Roemer estimated that it...Ch. 1 - Cornu performed Fizeau’s measurement of the speed...Ch. 1 - Suppose you have an unknown clear substance...Ch. 1 - Shown below is a ray of light going from air...Ch. 1 - Considering the previous problem, show that 3is...Ch. 1 - At what angle is light inside crown glass...Ch. 1 - Light reflected at 55.6° from a window is...Ch. 1 - (a) Light reflected at 62.5° from a gemstone in a...Ch. 1 - If bis Brewster’s angle for light reflected from...Ch. 1 - Unreasonable results Suppose light travels from...Ch. 1 - Unreasonable results Light traveling from water to...Ch. 1 - If a polarizing filter reduces the intensity of...Ch. 1 - Suppose you put on two pairs of polarizing...Ch. 1 - (a) On a day when the intensity of sunlight is...Ch. 1 - Light shows staged with lasers use moving mirrors...Ch. 1 - Consider sunlight entering Earth’s atmosphere at...Ch. 1 - A light ray entering an optical fiber surrounded...Ch. 1 - A light ray falls on the left face of a prism (see...Ch. 1 - If the apex angle in the previous problem is 20.0°...Ch. 1 - The light incident on polarizing sheet P1is...Ch. 1 - Prove that if I is the intensity of light...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
17. A speed skater moving to the left across frictionless ice at 8.0 m/s hits a 5.0-m-wide patch of rough ice....
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
The enzyme that catalyzes the C C bond cleavage reaction that converts serine to glycine removes the substitue...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its wavelength remains the same. (e) Its frequency remains the same.arrow_forwardWhich is true of diffraction? (7.6) (a) It occurs best when the slit width is less than the wavelength of a wave. (b) It depends on refraction. (c) It is caused by interference. (d) It does not occur for light.arrow_forwardCan a sound wave in air be polarized? Explain.arrow_forward
- Thanksarrow_forwardThe angle of incidence of a wave of a wave with angle of transmission 45 degree and the refractive indices of the two media given by 2 and 1.3 is 41.68 61.86 12.23 27.89 No answerarrow_forwardThe speed of light in a diamond is 12.44 million m / s, so the diamond's refractive index is * 1.24 0.24 0.42 2.41arrow_forward
- The wavelength of red light from a helium-neon laser is 633 nm in air and 479 nm in a medium of index of refraction n. The speed v and the frequency f of light in the given medium are: (Given: c = 3 x 10^8 m/s, and 1 nm = 10^-9 m) V = 2.64 x 10^8 m/s; f = 4.74 × 10^14 Hz v = 2.45 x 10^8 m/s; f = 4.74 × 10^14 Hz v = 2.27 x 10^8 m/s; f = 6.26 × 10^14 Hz v = 2.27 x 10^8 m/s;f = 4.74×10^14 Hz v = 2.64 x 10^8 m/s; f = 5.39 x 10^14 Hz v = 2.45 x 10^8 m/s; f = 5.80 × 10^14 Hzarrow_forwardThe atmosphere of Jupiter is more than 1000km thick .from the surface of Jupiter would you expect to see a white sun?arrow_forwardThe index of refraction of a glass rod is 1.48 at T = 20.0°C and varies linearly with temperature, with a coefficient of 2.50 x 10-5C⁰-1. The coefficient of linear expansion of the glass is 5.00 x 10-6C⁰-1. At 20.0 °C the length of the rod is 2.80 cm. A Michelson interferometer has this glass rod in one arm, and the rod is being heated so that its temperature increases at a rate of 5.00 C°/min. The light source has wavelength λ = 569 nm, and the rod initially is at T = 20.0°C. Part A How many fringes cross the field of view each minute? ΔΝ = Submit ΤΙ ΑΣΦ Request Answer < Return to Assignment Provide Feedback ? fringes/minutearrow_forward
- Huygens’s principle also applies to sound waves. During the day,the temperature of the atmosphere decreases with increasing altitude abovethe ground. But at night, when the ground cools, there is a layer of air justabove the surface in which the temperature increases with altitude. Use thisto explain why sound waves from distant sources can be heard more clearlyat night than in the daytime.arrow_forwardThe fact that light can be polarized and sound cannot be polarized can be best explained by which? Light travels much faster than sound. O Light is a transverse wave and sound is not. O Light travels much slower than sound. O Light is a longitudinal wave, and sound is not.arrow_forwardThe wavelength of red light from a helium-neon laser is 633 nm in air and 479 nm In a medium of index of refraction n. The speed v and the frequencyfof light in the given medium are: (Given: c = 3 x 10*8 m/s, and 1 nm = 10^-9 m) O v = 2.27 x 10°8 m/s;f=6.26 x 10*14 Hz O v = 2.64 x 10°8 m/s;f= 5.39 x 10*14 Hz O v = 245 x 10°8 m/s; f= 5.80 x 10*14 Hz O v= 227 x 10°8 m/s;f = 4.74x10^14 Hz O v=2.64 x 10*8 m/s; f = 4.74 x 10*14 Hz O v= 2.45 x 10*8 m/s;f = 4.74 x 10*14 Hzarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning