Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 11CP
An ideal gas is heated from
(a) at constant volume and (b) at constant pressure. For which case do you think the energy required will be greater? Why?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An ideal gas initially occupying 0.020 m3 at 1.0 MPa is quasistatically expanded inside
a piston-cylinder device at a constant pressure until its volume doubles. Next the
expansion is continued at constant volume till the pressure reaches half of the initial
pressure. Finally it is brought back to the initial state in a polytropic process with
exponent n=1.6.
(a) Draw the processes on a P-v diagram.
(b) Calculate the total work for the processes.
(c) Calculate the total heat transferred for the processes.
(d) What is the difference between the initial and final temperature?
A piston-cylinder assembly contains 3 lb of water vapor, initially at 300F and 20 lbf/in2 is compressed isothermally to a volume of 14ft3 . The system is then heated at constant volume to a final pressure of 140 lbf/in2 . During the isothermal compression 600 Btu of heat is transferred to the surroundings. Kinetic and potential energy effects are negligible.
Show the P-v diagram for both processes, calculate the total work done, and the total change in entropy.
A thermally insulated cylinder-piston assembly contains R-12 at 25°C and 90% titre. The volume, in this state, is 45 liters. The piston is allowed to move and the R-12 expands until it reaches a saturated vapor state. During this process, the R-12 performs 7.0 kJ work against the piston. Assuming that the process is adiabatic, determine the final specific internal energy of R-12 in this expansion process in kJ/kg.
Chapter 1 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 1 - How does the science of heat transfer differ from...Ch. 1 - What is the driving force for (a) heat transfer,...Ch. 1 - Prob. 3CPCh. 1 - How do rating problems in heat transfer differ...Ch. 1 - What is the difference between the analytical and...Ch. 1 - Prob. 6CPCh. 1 - What is the importance of modeling in engineering?...Ch. 1 - When modeling an engineering process, how is the...Ch. 1 - On a hot summer day, a student turns his fan on...Ch. 1 - Consider two identical rooms, one with a...
Ch. 1 - An ideal gas is heated from 50C to 80C (a) at...Ch. 1 - Prob. 12CPCh. 1 - What is heat flux? How is it related to the heat...Ch. 1 - What are the mechanisms of energy transfer to a...Ch. 1 - A logic chip used in a computer dissipates 3 W of...Ch. 1 - Consider a 150-W incandescent lamp. The filament...Ch. 1 - A 15-cm-diameter aluminum ball is to be heated...Ch. 1 - Prob. 18PCh. 1 - Prob. 19PCh. 1 - A 60-gallon water heated is initially filled with...Ch. 1 - Prob. 21PCh. 1 - Prob. 22PCh. 1 - Prob. 23PCh. 1 - Prob. 24PCh. 1 - Prob. 25PCh. 1 - Prob. 26PCh. 1 - Prob. 27PCh. 1 - Prob. 28PCh. 1 - A 5-m6-m8-m room is to be heated by an electrical...Ch. 1 - Prob. 30PCh. 1 - Prob. 31PCh. 1 - Air enters the duct of an air-conditioning system...Ch. 1 - Define thermal conductivity, and explain its...Ch. 1 - Prob. 34CPCh. 1 - Which is a better heat conductor, diamond or...Ch. 1 - How do the thermal conductivity of gases and...Ch. 1 - Why is the thermal conductivity of superinsulation...Ch. 1 - Why do we characterize the heat conduction ability...Ch. 1 - Prob. 39CPCh. 1 - What are the mechanisms of heat transfer? How are...Ch. 1 - Write down the expression for the physical laws...Ch. 1 - How does heat conduction differ from convection?Ch. 1 - Does any of the energy of the sun reach the earth...Ch. 1 - How does forced convection differ from natural...Ch. 1 - What is the physical mechanism of heat conduction...Ch. 1 - Consider heat transfer a windowless wall of house...Ch. 1 - Consider heat loss through two walls of house on a...Ch. 1 - Consider two houses that are identical except that...Ch. 1 - Consider two walls of a house that are identical...Ch. 1 - Define emissivity and absorptivity. What is...Ch. 1 - What is a blackbody? How do real bodies differ...Ch. 1 - A wood slab with a thickness 0.05 m is subjected...Ch. 1 - Prob. 53PCh. 1 - The inner and outer surfaces of a 0.5-cm thick...Ch. 1 - Prob. 55PCh. 1 - Prob. 56PCh. 1 - The north wall of an electrically heated home is...Ch. 1 - Prob. 58PCh. 1 - Prob. 59PCh. 1 - Prob. 60PCh. 1 - A concreate wall a surface area of 20 m2 and a...Ch. 1 - Prob. 62PCh. 1 - Prob. 63PCh. 1 - Prob. 64EPCh. 1 - Prob. 65EPCh. 1 - Air at 20C with a convection heat transfer...Ch. 1 - Prob. 67PCh. 1 - Prob. 68PCh. 1 - Prob. 69PCh. 1 - Prob. 70PCh. 1 - Prob. 71PCh. 1 - Prob. 72PCh. 1 - Prob. 73PCh. 1 - Prob. 74PCh. 1 - Prob. 75PCh. 1 - Prob. 76EPCh. 1 - Prob. 77EPCh. 1 - Prob. 78PCh. 1 - Prob. 79PCh. 1 - Prob. 80PCh. 1 - Prob. 81PCh. 1 - Prob. 82PCh. 1 - Using the conversion factors between W and Btu/h,...Ch. 1 - The outer surface of a spacecraft in space has an...Ch. 1 - Consider a person whose expose surface are is 1.7...Ch. 1 - Prob. 86PCh. 1 - Two surfaces, one highly polished and the other...Ch. 1 - A spherical interplanetary probe with a diameter...Ch. 1 - Prob. 89PCh. 1 - Can all three modes of heat transfer occur...Ch. 1 - Can a medium involve (a) conduction and...Ch. 1 - The deep human body temperature of a healthy...Ch. 1 - We often turn the fan on in summer to help us...Ch. 1 - Prob. 94PCh. 1 - Prob. 95PCh. 1 - Prob. 96PCh. 1 - An electronic package with a surface area of 1 m2...Ch. 1 - Consider steady heat transfer between two large...Ch. 1 - Prob. 99PCh. 1 - Prob. 100PCh. 1 - A 2-in-diameter spherical ball whose surface is...Ch. 1 - Prob. 102PCh. 1 - A 3-m-internal-diameter spherical tank made of...Ch. 1 - Prob. 104PCh. 1 - Solar radiation is incident on a 5-m2 solar...Ch. 1 - Prob. 106PCh. 1 - Prob. 107PCh. 1 - Prob. 108PCh. 1 - Prob. 109EPCh. 1 - An AISI 304 stainless steel sheet is going through...Ch. 1 - Prob. 111PCh. 1 - Prob. 112CPCh. 1 - Prob. 113PCh. 1 - Prob. 114PCh. 1 - Prob. 115PCh. 1 - Prob. 116PCh. 1 - Prob. 117PCh. 1 - Why is the metabolic rate of women, in general,...Ch. 1 - What is asymmetric thermal radiation How does it...Ch. 1 - How do (a) draft and (b) cold floor surfaces cause...Ch. 1 - Prob. 121CPCh. 1 - Why is it necessary to ventilate buildings? What...Ch. 1 - Consider a house in Atlanta, Georgia, that is...Ch. 1 - Prob. 124PCh. 1 - Prob. 125PCh. 1 - Prob. 126PCh. 1 - A 4m5m6m and room is to be heated by one ton (1000...Ch. 1 - Engine valves (cp=440J/kg.Kandp=7840kg/m3) are to...Ch. 1 - Prob. 129PCh. 1 - Prob. 130PCh. 1 - A 0.3 -cm-thick, 12-cm-high, and 18-cm-long...Ch. 1 - A 40-cm-long, 800-W electric resistance heating...Ch. 1 - It is well known that wind makes the cold air feel...Ch. 1 - An engine block with a surface area measured to be...Ch. 1 - Prob. 135PCh. 1 - Prob. 136PCh. 1 - Prob. 137PCh. 1 - Consider a person standing in a room maintained at...Ch. 1 - Prob. 139PCh. 1 - Prob. 140PCh. 1 - Prob. 141PCh. 1 - Prob. 142PCh. 1 - Prob. 143PCh. 1 - Prob. 144PCh. 1 - Prob. 145PCh. 1 - Prob. 146PCh. 1 - A 2-kW electric resistance heater submerged in...Ch. 1 - Prob. 148PCh. 1 - A cold bottled drink (m=2.5kg,cp=4200J/kg.K) at...Ch. 1 - Prob. 150PCh. 1 - Air enters a 12-m-long, 7-cm-diameter pipe at 50oC...Ch. 1 - Prob. 152PCh. 1 - Steady heat conduction occurs through a...Ch. 1 - Heat is lost through a brick wall (k=0.72W/m.K),...Ch. 1 - Prob. 155PCh. 1 - A 40-cm-long, 0.4-cm-diameter electric resistance...Ch. 1 - Prob. 157PCh. 1 - Over 90 percent of the energy dissipated by an...Ch. 1 - On a still, cleat night, the sky appears to be a...Ch. 1 - Prob. 160PCh. 1 - Prob. 161PCh. 1 - A persons head can be approximated as a...Ch. 1 - A person standing in a room loses heat to the air...Ch. 1 - Prob. 164PCh. 1 - Write an essay on how microwave ovens work, and...Ch. 1 - Using information form the utility bill for the...Ch. 1 - It is well know that at the same outdoor air...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (Q1) A piston-cylinder device contains 4.2 kg of argon at 950 kPa and 310°C is expanded according to the relation PV = C to 110 kPa. Then the gas is compressed isothermally to the initial pressure. Finally, the gas undergoes a constant pressure process to retum to the initial state. Determine (a) the temperature after the polytropic expansion, (b) the work done during each process, (c) the net work done of the cycle and (d) the net amount of the heat transfer.arrow_forwardIs the expression for work of a polytropic process W= p2V2- p1V1 / 1-n restricted to processes of an ideal gas? Explain.arrow_forwardNeed help on this one. A cylinder having an initial volume of 3 m3 contains 0.1 kg of water at 40°C. The water is then compressed in an isothermal quasi-equilibrium process until 71% of the mass is in liquid phase. Assuming that water behaves as an ideal gas during the first step of the process until the 2nd state is just reached, (a) Draw the t-v and p-v diagrams, (b) calculate the total work done (kJ) splitting the process into two steps, superheated vapor to saturated vapor to saturated liquid vapor. (c) determine the internal energy u (kJ/kg) of water at final state.arrow_forward
- Solve this question carefully and please help me . Circle your final answer the unit should be kJ/kg arrow_forwardA soup is set to boil. When the soup reaches 170°F, remove it from the heat and set it on the kitchen counter. The air in the kitchen is 80°F, and the soup in the bowl is 120°F after two minutes. After removing the soup from the heat, how long will it be 90°F?arrow_forwardQ5/ A 0.3-m3 rigid vessel initially contains saturated liquid- vapor mixture of water at 150°C. The water is now heated until it reaches the critical state. Determine the mass of the liquid water and the volume occupied by the liquid at the initial statearrow_forward
- 3- A mass of 10 kg of saturated refrigerant-134a vapor is contained in a piston-cylinder device at 600 kPa. Now 260 kJ of heat is transferred to the refrigerant at constant pressure while a 110-V source supplies current to a resistor within the cylinder for 30 min. If the final temperature is 80°C, the electric current supplied to the resistor is: (a) 1.173A (b) 1.273A (c) 1.373A (d) 1.473A (e) 1.573Aarrow_forwardA cake baked at 210°F is taken out of the oven and cooled to 70°F. After 10 minutes, the cake reaches 140°F. Is it safe to consume at 80°F minutes after it comes out of the oven?arrow_forwardDescribe the equilibrium condition in terms of the entropy changes of a system and its surroundings. What does this de-scription mean about the entropy change of the universe?arrow_forward
- Two kg of air, initially at 500 kPa, 350K, and 4 kg of carbon monoxide (CO) initially at 200kPa, 450K are inside a rigid, well-insulated container and separated by a partition as shown in figure below. The partition is released to move freely and allow the transfer of heat from one gas to the other without energy storage in the partition itself. The air and CO each behave as ideal gases with constant specific heats (CVo) of 0.717kj/kg-k and 0.744 kj/kg-k and gas constants (R) of 0.287 kJ/kg-k and 0.2968 kJ/kg-k, respectively. The heat is transferred from one gas to another until both gasses reach the same final pressure and temperature. At this equilibrium state determine: (m³) A. Total volume of the container: V = B. Temperature T2 = C. Pressure P2 = Show your detailed work on paper. (k) со k(Pa) Insulation Movable partition Airarrow_forwardexpa 6-Five kg of steam at pressure of 4.9 bar is produced from water at 20°C. Determine the amount of heat supplied if the steam is 0.9 dry. (12263kJ) 7-One kg of water at 47.8°C is heated under constant pressure of 13.7bar until it is converted into steam with 111°C degree of superheated. Determine the quantity of heat supplied during superheating and the total heat. (268kJ, 2852kJ) Special Home Workarrow_forward1 kg air undergoes reversible heating at constant P from Ti = 300K and Pi = 1 bar until the volume triples. Determine the Work for the process.(Cp = 29 J mol-1K-1)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY