Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 131P
A 0.3 -cm-thick, 12-cm-high, and 18-cm-long circuit board houses 80 closely spaced logic chips on one side, each dissipating 0.06 W. The board is impregnated with copper fillings and has an effective thermal conductivity of
All the heat generated in the chips is conducted across the circuit board and is dissipated from the back side of the board to the ambient air. Determine the temperature difference between the two sides of the circuit board.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 0.8-cm-thick,15-cm-high, and 20-cm-long circuit board houses 100 closely spaced logic chips on one side, each dissipating 0.05 W. The board is impregnated with copper fillings and has an effective thermal conductivity of 20 W/m-K. All the heat generated in the chips is conducted across the circuit board and is dissipated from the back side of the board to the ambient air. Determine the temperature difference between the two sides of the circuit board.
A 0.3-cm-thick, 12-cm-high, and 18-cm-long circuit board houses 80 closely spaced logic chips on one side, each
dissipating 004 W, as shown in the figure. The board is impregnated with copper fillings and has an effective thermal
cònductivity of 30 W/m-K. All the heat generated in the chips is conducted.across the circuit board and is dissipated from
the back side of the board to a medium at 78°C, with a heat transfer coefficient of 40 W/m2-K.
Regory
RAhumimn
Rcanv
71.
WWw.Taz
Determine the temperature T2-
The temperature T2 is
°C.
a 1 m-wide by 2 m-high window is composed of two 5 mm-thick glass panes, seperated by an air space of 10 mm. the temperature at the inner and outer surfaces of the window are 15 C and -20 C respectively. If the thermal conductivities of the glass pane and the air space are 1.4 w/m-k and 0.024 w/m-k, respectively. find the total conduction thermal resistance of the window in k/w
Chapter 1 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 1 - How does the science of heat transfer differ from...Ch. 1 - What is the driving force for (a) heat transfer,...Ch. 1 - Prob. 3CPCh. 1 - How do rating problems in heat transfer differ...Ch. 1 - What is the difference between the analytical and...Ch. 1 - Prob. 6CPCh. 1 - What is the importance of modeling in engineering?...Ch. 1 - When modeling an engineering process, how is the...Ch. 1 - On a hot summer day, a student turns his fan on...Ch. 1 - Consider two identical rooms, one with a...
Ch. 1 - An ideal gas is heated from 50C to 80C (a) at...Ch. 1 - Prob. 12CPCh. 1 - What is heat flux? How is it related to the heat...Ch. 1 - What are the mechanisms of energy transfer to a...Ch. 1 - A logic chip used in a computer dissipates 3 W of...Ch. 1 - Consider a 150-W incandescent lamp. The filament...Ch. 1 - A 15-cm-diameter aluminum ball is to be heated...Ch. 1 - Prob. 18PCh. 1 - Prob. 19PCh. 1 - A 60-gallon water heated is initially filled with...Ch. 1 - Prob. 21PCh. 1 - Prob. 22PCh. 1 - Prob. 23PCh. 1 - Prob. 24PCh. 1 - Prob. 25PCh. 1 - Prob. 26PCh. 1 - Prob. 27PCh. 1 - Prob. 28PCh. 1 - A 5-m6-m8-m room is to be heated by an electrical...Ch. 1 - Prob. 30PCh. 1 - Prob. 31PCh. 1 - Air enters the duct of an air-conditioning system...Ch. 1 - Define thermal conductivity, and explain its...Ch. 1 - Prob. 34CPCh. 1 - Which is a better heat conductor, diamond or...Ch. 1 - How do the thermal conductivity of gases and...Ch. 1 - Why is the thermal conductivity of superinsulation...Ch. 1 - Why do we characterize the heat conduction ability...Ch. 1 - Prob. 39CPCh. 1 - What are the mechanisms of heat transfer? How are...Ch. 1 - Write down the expression for the physical laws...Ch. 1 - How does heat conduction differ from convection?Ch. 1 - Does any of the energy of the sun reach the earth...Ch. 1 - How does forced convection differ from natural...Ch. 1 - What is the physical mechanism of heat conduction...Ch. 1 - Consider heat transfer a windowless wall of house...Ch. 1 - Consider heat loss through two walls of house on a...Ch. 1 - Consider two houses that are identical except that...Ch. 1 - Consider two walls of a house that are identical...Ch. 1 - Define emissivity and absorptivity. What is...Ch. 1 - What is a blackbody? How do real bodies differ...Ch. 1 - A wood slab with a thickness 0.05 m is subjected...Ch. 1 - Prob. 53PCh. 1 - The inner and outer surfaces of a 0.5-cm thick...Ch. 1 - Prob. 55PCh. 1 - Prob. 56PCh. 1 - The north wall of an electrically heated home is...Ch. 1 - Prob. 58PCh. 1 - Prob. 59PCh. 1 - Prob. 60PCh. 1 - A concreate wall a surface area of 20 m2 and a...Ch. 1 - Prob. 62PCh. 1 - Prob. 63PCh. 1 - Prob. 64EPCh. 1 - Prob. 65EPCh. 1 - Air at 20C with a convection heat transfer...Ch. 1 - Prob. 67PCh. 1 - Prob. 68PCh. 1 - Prob. 69PCh. 1 - Prob. 70PCh. 1 - Prob. 71PCh. 1 - Prob. 72PCh. 1 - Prob. 73PCh. 1 - Prob. 74PCh. 1 - Prob. 75PCh. 1 - Prob. 76EPCh. 1 - Prob. 77EPCh. 1 - Prob. 78PCh. 1 - Prob. 79PCh. 1 - Prob. 80PCh. 1 - Prob. 81PCh. 1 - Prob. 82PCh. 1 - Using the conversion factors between W and Btu/h,...Ch. 1 - The outer surface of a spacecraft in space has an...Ch. 1 - Consider a person whose expose surface are is 1.7...Ch. 1 - Prob. 86PCh. 1 - Two surfaces, one highly polished and the other...Ch. 1 - A spherical interplanetary probe with a diameter...Ch. 1 - Prob. 89PCh. 1 - Can all three modes of heat transfer occur...Ch. 1 - Can a medium involve (a) conduction and...Ch. 1 - The deep human body temperature of a healthy...Ch. 1 - We often turn the fan on in summer to help us...Ch. 1 - Prob. 94PCh. 1 - Prob. 95PCh. 1 - Prob. 96PCh. 1 - An electronic package with a surface area of 1 m2...Ch. 1 - Consider steady heat transfer between two large...Ch. 1 - Prob. 99PCh. 1 - Prob. 100PCh. 1 - A 2-in-diameter spherical ball whose surface is...Ch. 1 - Prob. 102PCh. 1 - A 3-m-internal-diameter spherical tank made of...Ch. 1 - Prob. 104PCh. 1 - Solar radiation is incident on a 5-m2 solar...Ch. 1 - Prob. 106PCh. 1 - Prob. 107PCh. 1 - Prob. 108PCh. 1 - Prob. 109EPCh. 1 - An AISI 304 stainless steel sheet is going through...Ch. 1 - Prob. 111PCh. 1 - Prob. 112CPCh. 1 - Prob. 113PCh. 1 - Prob. 114PCh. 1 - Prob. 115PCh. 1 - Prob. 116PCh. 1 - Prob. 117PCh. 1 - Why is the metabolic rate of women, in general,...Ch. 1 - What is asymmetric thermal radiation How does it...Ch. 1 - How do (a) draft and (b) cold floor surfaces cause...Ch. 1 - Prob. 121CPCh. 1 - Why is it necessary to ventilate buildings? What...Ch. 1 - Consider a house in Atlanta, Georgia, that is...Ch. 1 - Prob. 124PCh. 1 - Prob. 125PCh. 1 - Prob. 126PCh. 1 - A 4m5m6m and room is to be heated by one ton (1000...Ch. 1 - Engine valves (cp=440J/kg.Kandp=7840kg/m3) are to...Ch. 1 - Prob. 129PCh. 1 - Prob. 130PCh. 1 - A 0.3 -cm-thick, 12-cm-high, and 18-cm-long...Ch. 1 - A 40-cm-long, 800-W electric resistance heating...Ch. 1 - It is well known that wind makes the cold air feel...Ch. 1 - An engine block with a surface area measured to be...Ch. 1 - Prob. 135PCh. 1 - Prob. 136PCh. 1 - Prob. 137PCh. 1 - Consider a person standing in a room maintained at...Ch. 1 - Prob. 139PCh. 1 - Prob. 140PCh. 1 - Prob. 141PCh. 1 - Prob. 142PCh. 1 - Prob. 143PCh. 1 - Prob. 144PCh. 1 - Prob. 145PCh. 1 - Prob. 146PCh. 1 - A 2-kW electric resistance heater submerged in...Ch. 1 - Prob. 148PCh. 1 - A cold bottled drink (m=2.5kg,cp=4200J/kg.K) at...Ch. 1 - Prob. 150PCh. 1 - Air enters a 12-m-long, 7-cm-diameter pipe at 50oC...Ch. 1 - Prob. 152PCh. 1 - Steady heat conduction occurs through a...Ch. 1 - Heat is lost through a brick wall (k=0.72W/m.K),...Ch. 1 - Prob. 155PCh. 1 - A 40-cm-long, 0.4-cm-diameter electric resistance...Ch. 1 - Prob. 157PCh. 1 - Over 90 percent of the energy dissipated by an...Ch. 1 - On a still, cleat night, the sky appears to be a...Ch. 1 - Prob. 160PCh. 1 - Prob. 161PCh. 1 - A persons head can be approximated as a...Ch. 1 - A person standing in a room loses heat to the air...Ch. 1 - Prob. 164PCh. 1 - Write an essay on how microwave ovens work, and...Ch. 1 - Using information form the utility bill for the...Ch. 1 - It is well know that at the same outdoor air...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2.38 The addition of aluminum fins has been suggested to increase the rate of heat dissipation from one side of an electronic device 1 m wide and 1 m tall. The fins are to be rectangular in cross section, 2.5 cm long and 0.25 cm thick, as shown in the figure. There are to be 100 fins per meter. The convection heat transfer coefficient, both for the wall and the fins, is estimated to be K. With this information determine the percent increase in the rate of heat transfer of the finned wall compared to the bare wall.arrow_forward1.60 Two electric resistance heaters with a 20 cm length and a 2 cm diameter are inserted into a well-insulated 40-L tank of water that is initially at 300 K. If each heater dissipates 500 W, what is the time required for bringing the water temperature in the tank to 340 K? State your assumption for your analysis.arrow_forward1. A 0.4-cm-thick, 12-cm-high, and 18-cm-long circuit board houses 80 closely spaced logic chips on one side, each dissipating 0.04 W. The board is impregnated with cop- per fillings and has an effective thermal conductivity of 30 W/m/K. All of the heat generated in the chips is conducted across the circuit board and is dissipated from the back side of the board to a medium at 40°C with a heat transfer coefficient of 52 W/m2/K. (a) Determine the temperatures on the two sides of the circuit board. (b) Now a 0.2-cm-thick, 12-cm-high, and 18-cm long aluminum plate (k=237 W/m/K) with 864 2-cm-long aluminum pin fins of diameter 0.25 is attached to the back side of the circuit board with a 0.02-cm-thick epoxy adhesive (k=1.8 W/m/K). Determine the new temperatures on the two sides of the circuit board.arrow_forward
- i need the answer quicklyarrow_forwardIt is designed in such a way that the internal temperature of a commercial heat treatment furnace can reach up to 165 oC. All surfaces of the furnace consist of firebrick (10 cm), insulation material and sheet metal (3mm) from the inside out. Given that the outdoor temperature is 22 oC, the outer sheet will be allowed to go up to 35 oC, which is a temperature that will not be disturbed by hand contact. In this case, determine the insulation material thickness to be used. Insulation material thermal conductivity coefficient is 0.066 insulation W / m oC, 60 W / m oC for sheet metal and 115 W / m oC for firebrick. Indoor heat transfer coefficient will be accepted as 25 W / m2 oC and 12 W / m2 oC for outdoor environment.arrow_forwarda. What is the heat flux, q"1 [in W/m2], at the left-hand side of layer B? Express your answer as a negative number if the heat flux goes to the left, and as a positive number if the heat flux goes to the right. b.What is the heat flux, q"2 ( in W/m2) at the right-hand side of layer B? Express your answer as a negative number if the heat flux goes to the left, and as a positive number if the heat flux goes to the right. c. What is the temperature, T1, on the left-hand side of layer B, in Celsius? d. What is the temperature, T2, on the right-hand side of layer B, in Celsius?arrow_forward
- QUESTION 3: Warm air is blown over the inner surface of the windshield of an automobile to defrost ice accumulated on the outer surface. The windshield has a thickness of 5 mm and thermal conductivity of 1.4 W/m-K. The outside ambient temperature is -10°C and the convection heat transfer coefficient is 200 W/m²-K, while the ambient temperature inside the automobile is 25°C. Determine the value of the convection heat transfer coefficient for the warm air blowing over the inner surface of the windshield necessary to cause the accumulated ice to begin melting.arrow_forwardA steam bath center in a gym consists of a wall three different material layers. First two layers have thermal conductivity of 5 W/m K, 10 W/m K and 2*(10) W/m K respectively. All three layers have thickness of 8 cm each. The inside wall surface temperature of steam room is 80 °C whereas outside surface temperature is 25 °C. Draw this composite wall. Calculate the heat transfer per unit length of the wall.arrow_forwardA 18-in thick furnace wall insulated with 20 cm thick fire brick whose thermal conductivity of 0.75 Btu/hr-ft- R and 0.5 W/m-K, respectively. Furnace side wall is 500 C while outer side is at 60 C. Calculate the heat transmitted across the wall in Watts per sq meter.arrow_forward
- Heat transferarrow_forwardA pipe 30 m long with an outer diameter of 75 mm is used to deliver steam at a rate of 1500 kg / hour. The vapor pressure is 198.53 kPa entering the pipe with a quality of 98%. The pipe needs to be insulated with a thermal conductivity of 0.2 W / (m K) so that the quality of the steam will only slightly decrease to 95%. The outer surface temperature of the insulation is assumed to be 25 ° C. Ignore resistance conductive of the pipe material and it is assumed that there is no pressure drop in the pipe. a. Determine the enthalpy of incoming vapor = Answer kJ / kg. b. Determine the enthalpy of steam coming out = Answer kJ / kg. c. Determine the vapor heat change / loss along the flow = Answer watt. d. Specify the minimum required insulation thickness = Answer cm.arrow_forwardIt is designed in such a way that the internal temperature of a commercial heat treatment furnace can reach up to 165 oC. All surfaces of the furnace consist of firebrick (10 cm), insulation material and sheet metal (3mm) from the inside out. Given that the outdoor temperature is 22 oC, the outer sheet will be allowed to go up to 35 oC, which is a temperature that will not disturb in contact with hands. In this case, determine the insulation material thickness to be used. The thermal conductivity coefficient of the insulation material is insulation 0.066 W / m oC, 60 W / m oC for sheet metal and 115 W / m oC for firebrick. Indoor heat transfer coefficient will be accepted as 25 W / m2 oC and 12 W / m2 oC for outdoor environment.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license