A 3-m-internal-diameter spherical tank made of 1-cm-thick stainless steel is use to store iced water at
The tank is located outdoors at
Assuming the entire steel tank to be at
Assume the average surrounding surface temperature for radiation exchange to be
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Heat and Mass Transfer: Fundamentals and Applications
- 1.60 Two electric resistance heaters with a 20 cm length and a 2 cm diameter are inserted into a well-insulated 40-L tank of water that is initially at 300 K. If each heater dissipates 500 W, what is the time required for bringing the water temperature in the tank to 340 K? State your assumption for your analysis.arrow_forward2.55 A long, 1-cm-diameter electric copper cable is embedded in the center of a 25-cm-square concrete block. If the outside temperature of the concrete is 25oC and the rate of electrical energy dissipation in the cable is 150 W per meter length, determine temperatures at the outer surface and at the center of the cable.arrow_forwardTo warm up milk, it is poured into a thin-walled glass whose dimeter is 6 cm. The height of the milk in the glass is 7 cm. The glass is placed into a large pan filled with hot water at 60o C. The milk is stirred constantly, so that its temperature is always uniform. If the heat transfer coefficient between the water and the glass is 120 W/m2oC, determine how long it will take for the milk to warm up from 3o C to 38o C. Take the properties of the milk to be the same as those of water. Can the milk in this case be treated as a lumped system> Why?arrow_forward
- Q4 A 3-m-internal-diameter spherical tank made of 5-cm thick stainless steel is used to store iced water at 0°C. The tank is located outdoors at 25°C. Assuming the entire steel tank to be at 0°C and thus the thermal resistance of the tank to be negligible, determine (a) the rate of heat transfer to the iced water in the tank and (b) the amount of ice at 0°C that melts during a 24-hour period. The heat of fusion of water at atmospheric pressure is = 333.7 kJ/kg. The emissivity of the outer surface of the tank is 0.6, and the convection heat transfer coefficient on the outer surface can be taken to be 30 W/m2 · "C. Assume the average surrounding surface temperature for radiation exchange to be 15°C.arrow_forwardThe boiling temperature of nitrogen at atmospheric pressure at sea level (1 atm) is -196°C. Therefore, nitrogen is commonly used in low temperature scientific studies since the temperature of liquid nitrogen in a tank open to the atmosphere will remain constant at -196°C until the liquid nitrogen in the tank is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m3 at 1 atm. Consider a 3-m-diameter spherical tank initially filled with liquid nitrogen at 1 atm and 196°C. The tank is exposed to 22°C ambient air with a heat transfer coefficient of 22 W/m2 · °C. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the nitrogen inside. Disregarding any radiation heat exchange, determine the rate of evaporation of the liquid nitrogen in the tank as a result of the heat transfer from the ambient air in kg/sec. Answer in…arrow_forwardA supply of 50 kg of chicken at 6degC contained in a box is to be frozen to -18degC in a freezer. Determine the amount of heat that needs to be removed. The latent heat of chicken is 247 kJ/kg and its specific heat is 3.32 kJ/kg-degC above freezing and 1.77 kJ/kg-degC below freezing. The freezing temperature of the chicken is -2.8degC. include diagramarrow_forward
- i need the answer quicklyarrow_forwardThree tons of fish is to be stored at a temperature of -10°C for 24hrs. The product enters the chiller at a temperature of 8°C. The specific heat below and above freezing is 0.41 kcal/kg-C and 0.76 kcal/kg-C respectively and its latent heat of fusion is 51 kcal/kg. If the freezing temperature of the product is -2.2 °C, determine the product load in kcal/hr.arrow_forwardthermodynamicarrow_forward
- The boiling temperature of nitrogen at atmospheric pressure at sea level (1 atm pressure) is -196 °C. Therefore, nitrogen is commonly used in low-temperature scientific studies since the temperature of liquid nitrogen in a tank open to the atmosphere will remain constant at -196 °C until it is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m3 at 1 atm. Consider a 3-m-diameter spherical tank that is initially filled with liquid nitrogen at 1 atm and -196 °C. The tank is exposed to ambient air at 15° C, with a combined convection and radiation heat transfer coefficient of 35 W/m2⋅K. The temperature of the thin-shelled spherical tank is observed to be almost the same as the temperature of the nitrogen inside. Determine the rate of evaporation (in kg/s) of the liquid nitrogen in the tank as a result of the heat transfer from the ambient air if the tank is insulated with…arrow_forward"Consider a heat engine with a piston chamber that has a diameter of 30 mm, a cold reservoir at 285 K and hot reservoir at 350 K. It is also equipped with a metal can cylinder that has a volume of 0.0002 m3. What is the total volume of air in the system if the metal can cylinder is in the hot reservoir and the measured pressure and height of the piston are 103850 Pa and 60 mm, respectively?" O 4.24x10-5 m3 O 4.25x10-2 m3 O 2,42x10-4 m3 O 3.70x10-4 m3arrow_forwardA 3-m-internal-diameter spherical tank made of 1-cm-thick stainless steel is used to store iced water at 0°C. The tank is located outdoors at 25°C. Assuming the entire steel tank to be at 0°C and thus the thermal resistance of the tank to be negligible, determine (a) the rate of heat transfer to the iced water in the tank and (b) the amount of ice at 0°C that melts during a 24- hour period. The heat of fusion of water at atmospheric pressure is h = 333.7 kJ/kg. The emissivity of the outer surface of the tank is 0.75, and the convection heat transfer coefficient on the outer surface can be taken to be 30 W/m2 · °C. Assume the average surrounding surface temperature for radiation exchange to be 15°C.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning