Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 38CP
Why do we characterize the heat conduction ability of insulators in terms of their apparent thermal conductivity instead of ordinary thermal conductivity?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What happens to heat transfer per unit time in conduction heat transfer as thermal conductivity decreases?
What are the equations for heat transfer from conductions, convection, and radiation?
A steel plate 30 mm thick with a thermal conductivity k = 50 W/m K has a heat
transfer rate of 125 kW/m². Assuming steady state heat transfer, calculate the
temperature difference across the plate.
Chapter 1 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 1 - How does the science of heat transfer differ from...Ch. 1 - What is the driving force for (a) heat transfer,...Ch. 1 - Prob. 3CPCh. 1 - How do rating problems in heat transfer differ...Ch. 1 - What is the difference between the analytical and...Ch. 1 - Prob. 6CPCh. 1 - What is the importance of modeling in engineering?...Ch. 1 - When modeling an engineering process, how is the...Ch. 1 - On a hot summer day, a student turns his fan on...Ch. 1 - Consider two identical rooms, one with a...
Ch. 1 - An ideal gas is heated from 50C to 80C (a) at...Ch. 1 - Prob. 12CPCh. 1 - What is heat flux? How is it related to the heat...Ch. 1 - What are the mechanisms of energy transfer to a...Ch. 1 - A logic chip used in a computer dissipates 3 W of...Ch. 1 - Consider a 150-W incandescent lamp. The filament...Ch. 1 - A 15-cm-diameter aluminum ball is to be heated...Ch. 1 - Prob. 18PCh. 1 - Prob. 19PCh. 1 - A 60-gallon water heated is initially filled with...Ch. 1 - Prob. 21PCh. 1 - Prob. 22PCh. 1 - Prob. 23PCh. 1 - Prob. 24PCh. 1 - Prob. 25PCh. 1 - Prob. 26PCh. 1 - Prob. 27PCh. 1 - Prob. 28PCh. 1 - A 5-m6-m8-m room is to be heated by an electrical...Ch. 1 - Prob. 30PCh. 1 - Prob. 31PCh. 1 - Air enters the duct of an air-conditioning system...Ch. 1 - Define thermal conductivity, and explain its...Ch. 1 - Prob. 34CPCh. 1 - Which is a better heat conductor, diamond or...Ch. 1 - How do the thermal conductivity of gases and...Ch. 1 - Why is the thermal conductivity of superinsulation...Ch. 1 - Why do we characterize the heat conduction ability...Ch. 1 - Prob. 39CPCh. 1 - What are the mechanisms of heat transfer? How are...Ch. 1 - Write down the expression for the physical laws...Ch. 1 - How does heat conduction differ from convection?Ch. 1 - Does any of the energy of the sun reach the earth...Ch. 1 - How does forced convection differ from natural...Ch. 1 - What is the physical mechanism of heat conduction...Ch. 1 - Consider heat transfer a windowless wall of house...Ch. 1 - Consider heat loss through two walls of house on a...Ch. 1 - Consider two houses that are identical except that...Ch. 1 - Consider two walls of a house that are identical...Ch. 1 - Define emissivity and absorptivity. What is...Ch. 1 - What is a blackbody? How do real bodies differ...Ch. 1 - A wood slab with a thickness 0.05 m is subjected...Ch. 1 - Prob. 53PCh. 1 - The inner and outer surfaces of a 0.5-cm thick...Ch. 1 - Prob. 55PCh. 1 - Prob. 56PCh. 1 - The north wall of an electrically heated home is...Ch. 1 - Prob. 58PCh. 1 - Prob. 59PCh. 1 - Prob. 60PCh. 1 - A concreate wall a surface area of 20 m2 and a...Ch. 1 - Prob. 62PCh. 1 - Prob. 63PCh. 1 - Prob. 64EPCh. 1 - Prob. 65EPCh. 1 - Air at 20C with a convection heat transfer...Ch. 1 - Prob. 67PCh. 1 - Prob. 68PCh. 1 - Prob. 69PCh. 1 - Prob. 70PCh. 1 - Prob. 71PCh. 1 - Prob. 72PCh. 1 - Prob. 73PCh. 1 - Prob. 74PCh. 1 - Prob. 75PCh. 1 - Prob. 76EPCh. 1 - Prob. 77EPCh. 1 - Prob. 78PCh. 1 - Prob. 79PCh. 1 - Prob. 80PCh. 1 - Prob. 81PCh. 1 - Prob. 82PCh. 1 - Using the conversion factors between W and Btu/h,...Ch. 1 - The outer surface of a spacecraft in space has an...Ch. 1 - Consider a person whose expose surface are is 1.7...Ch. 1 - Prob. 86PCh. 1 - Two surfaces, one highly polished and the other...Ch. 1 - A spherical interplanetary probe with a diameter...Ch. 1 - Prob. 89PCh. 1 - Can all three modes of heat transfer occur...Ch. 1 - Can a medium involve (a) conduction and...Ch. 1 - The deep human body temperature of a healthy...Ch. 1 - We often turn the fan on in summer to help us...Ch. 1 - Prob. 94PCh. 1 - Prob. 95PCh. 1 - Prob. 96PCh. 1 - An electronic package with a surface area of 1 m2...Ch. 1 - Consider steady heat transfer between two large...Ch. 1 - Prob. 99PCh. 1 - Prob. 100PCh. 1 - A 2-in-diameter spherical ball whose surface is...Ch. 1 - Prob. 102PCh. 1 - A 3-m-internal-diameter spherical tank made of...Ch. 1 - Prob. 104PCh. 1 - Solar radiation is incident on a 5-m2 solar...Ch. 1 - Prob. 106PCh. 1 - Prob. 107PCh. 1 - Prob. 108PCh. 1 - Prob. 109EPCh. 1 - An AISI 304 stainless steel sheet is going through...Ch. 1 - Prob. 111PCh. 1 - Prob. 112CPCh. 1 - Prob. 113PCh. 1 - Prob. 114PCh. 1 - Prob. 115PCh. 1 - Prob. 116PCh. 1 - Prob. 117PCh. 1 - Why is the metabolic rate of women, in general,...Ch. 1 - What is asymmetric thermal radiation How does it...Ch. 1 - How do (a) draft and (b) cold floor surfaces cause...Ch. 1 - Prob. 121CPCh. 1 - Why is it necessary to ventilate buildings? What...Ch. 1 - Consider a house in Atlanta, Georgia, that is...Ch. 1 - Prob. 124PCh. 1 - Prob. 125PCh. 1 - Prob. 126PCh. 1 - A 4m5m6m and room is to be heated by one ton (1000...Ch. 1 - Engine valves (cp=440J/kg.Kandp=7840kg/m3) are to...Ch. 1 - Prob. 129PCh. 1 - Prob. 130PCh. 1 - A 0.3 -cm-thick, 12-cm-high, and 18-cm-long...Ch. 1 - A 40-cm-long, 800-W electric resistance heating...Ch. 1 - It is well known that wind makes the cold air feel...Ch. 1 - An engine block with a surface area measured to be...Ch. 1 - Prob. 135PCh. 1 - Prob. 136PCh. 1 - Prob. 137PCh. 1 - Consider a person standing in a room maintained at...Ch. 1 - Prob. 139PCh. 1 - Prob. 140PCh. 1 - Prob. 141PCh. 1 - Prob. 142PCh. 1 - Prob. 143PCh. 1 - Prob. 144PCh. 1 - Prob. 145PCh. 1 - Prob. 146PCh. 1 - A 2-kW electric resistance heater submerged in...Ch. 1 - Prob. 148PCh. 1 - A cold bottled drink (m=2.5kg,cp=4200J/kg.K) at...Ch. 1 - Prob. 150PCh. 1 - Air enters a 12-m-long, 7-cm-diameter pipe at 50oC...Ch. 1 - Prob. 152PCh. 1 - Steady heat conduction occurs through a...Ch. 1 - Heat is lost through a brick wall (k=0.72W/m.K),...Ch. 1 - Prob. 155PCh. 1 - A 40-cm-long, 0.4-cm-diameter electric resistance...Ch. 1 - Prob. 157PCh. 1 - Over 90 percent of the energy dissipated by an...Ch. 1 - On a still, cleat night, the sky appears to be a...Ch. 1 - Prob. 160PCh. 1 - Prob. 161PCh. 1 - A persons head can be approximated as a...Ch. 1 - A person standing in a room loses heat to the air...Ch. 1 - Prob. 164PCh. 1 - Write an essay on how microwave ovens work, and...Ch. 1 - Using information form the utility bill for the...Ch. 1 - It is well know that at the same outdoor air...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider steady-state conditions for one-dimensional conduction in a plane wall having a thermal conductivity k = 40 W/m-K and a thickness L= 0.35 m, with no internal heat generation. Case 1 Determine the heat flux, in kW/m2, and the unknown quantity for each case. 2 3 4 5 i 68 i -40 T₁ (°C) 50 -30 70 T₁ i 126 T₂(°C) -20 -10 40 L 30 -T₂ i dT/dx(k/m) -200 i 57.142 160 -80 200 i i i 8 q (kW/m²) -2.285 -6.4 i 3.2 i -8arrow_forward1. The resistance wire of a 1000 Watt iron is 40 cm long and has a diameter of D= 0.2cm. Determine the rate of heat generation in the wire per unit volume in W/cm3, and the heat flux on the outer surface of the wire, in W/cm2, as a result of the heat generation. q" 2. Selected problems from the textbook (2.9, 2.10, 2.14)arrow_forward2. The wall of a cold room consists of a layer of cork sandwiched between outer and inner walls of wood, the wood walls being each 30 mm thick. The inside atmosphere of the room is maintained at -20 °C when the external atmospheric temperature is 25 °C, the heat loss through the wall is 42 W/m2. Taking the thermal conductivity of wood and cork as 0.20 W/m-K and 0.05 W/m-K respectively, and the rate of heat transfer between each exposed wood surface and their respective atmospheres as 15 W/m2-K, calculate the thickness of the cork. (mm)arrow_forward
- O Which material will transfer more heat? Either a material with thermal conductivity k = 121W/mec or k = 22 Wnsc Justify your answer.arrow_forwardIf the rate of heat flow through a furnace wall is 0.94 kW/m². The wall consisting of 0.20 m thick inner layer of chrome brick, a center layer of kaolin brick of 10.0 cm and an outer layer of masonry brick 100 mm thick, having a thermal conductivity of 1.25 W/m°C , 0.74x10ª kW/m°C_and 0.555x10³ kW/m°C respectively. The unit surface conductance at the inner surface is 74 W/m2 °C and the outer surface temperature is 70 °C . The temperature of the gases inside the furnace is 1670 °C , assume steady heat flow, Calculate the following: 1- The temperatures of the gases inside the furnace. 2- The interior surface temperature of the inner and outer layers.arrow_forwardA 1.0-mm-diameter wire is maintained at a temperature of 400 •C and exposed to a convection environment at 40 •C with h = 120 W/m2 • -C. Calculate the thermal conductivity in BTU/hr-ft-deg F that will just cause an insulation thickness of 0.2 mm to produce a "critical radius."arrow_forward
- HEAT TRANSFER (a) Determine the thermal conductivity of an insulating material given the following data: steel pipe with 0.1025 m inner diameter and 0.1150 m outer diameter, insulation thickness 3 cm, heat flow per meter is 150 W/m, steel thermal conductivity 55 W/m-°C, and overall temperature difference of 72.2°C. If the temperature of the steam inside the pipe is 128°C, (b) find the outside temperature of the insulating material.arrow_forwardIn an experiment to determine the thermal conductivity of a new metal alloy, a bar of the metal is completely surrounded by insulation and exposed to 705 W of constant heat energy at one end. The bar has a radius of 0.069 m and a length of 0.365 m. The entire set-up is place in a cold room and once the system has reached steady state conditions, the temperature at the hot end is measured to be 67.3°C and the temperature at the cold end is measured to be 10.5°C. What is the thermal conductivity (in W/m∙K) of the metal alloy [round your final answer to zero decimal places]?arrow_forwardThe rate of heat conduction through a plane wall is proportional to the average thermal conductivity, the wall area, and the temperature difference, but is inversely proportional to the ---------------.arrow_forward
- In a composite slab, the temperature at the interface (Tinter ) between two materials is equal to the average of the temperature at the two ends. Assuming steady one dimensional heat conduction, which of the following statements is true about the respective thermal conductivities?arrow_forwarda flat wall is covered with a layer of insulation 1.0 in. thick whose thermal conductivity is 0.8 Btu/hr-ft- F. the temperature of the wall on the inside of the insulation is 600F. the wall loses heat to the environment by convection on the surface of the insulation. the average value of the convection heat transfer coefficient on the inslation surface is 950 Btu/hr-ft^2-F. compute the bulk temperature of the environment if the outer surface of the insulation does not exceed 105 F.arrow_forwardPlease help solve the following heat transfer problem. You are to use a resistance model in your solution. Thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license