Heat and Mass Transfer: Fundamentals and Applications
5th Edition
ISBN: 9780073398181
Author: Yunus A. Cengel Dr., Afshin J. Ghajar
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 1, Problem 89P
To determine
The case for which energy required will be greater.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The amount of radiation received per unit time by a person working near a radioactive source, commonly called the dose rate, is measured in rem hr-1. The safety regulations forbid dose rates in excess of 7.5 × 10-4 rem hr-1. The γ dose rate from the 4219K source is found to be 3 × 10-3 rem hr-1 at a distance of 1 m. What is the minimum distance from this source at which itis safe to work? After how long will it be safe to work at a distance of 1 m from the source?
The total emissive power of a surface is
500 W/(m ^ 2) at a temperature T1, and
1200 W/(m ^ 2) at a temperature T2 ,where the
temperatures are in Kelvin. Assume the
emissivity of the surface to be constant, find the
ratio of the temperatures T1/T2.
question from zemansky book
Chapter 1 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Ch. 1 - How does the science of heat transfer differ from...Ch. 1 - What is the driving force for (a) heat transfer,...Ch. 1 - Prob. 3CPCh. 1 - How do rating problems in heat transfer differ...Ch. 1 - What is the difference between the analytical and...Ch. 1 - Prob. 6CPCh. 1 - What is the importance of modeling in engineering?...Ch. 1 - When modeling an engineering process, how is the...Ch. 1 - On a hot summer day, a student turns his fan on...Ch. 1 - Consider two identical rooms, one with a...
Ch. 1 - An ideal gas is heated from 50C to 80C (a) at...Ch. 1 - Prob. 12CPCh. 1 - What is heat flux? How is it related to the heat...Ch. 1 - What are the mechanisms of energy transfer to a...Ch. 1 - A logic chip used in a computer dissipates 3 W of...Ch. 1 - Consider a 150-W incandescent lamp. The filament...Ch. 1 - A 15-cm-diameter aluminum ball is to be heated...Ch. 1 - Prob. 18PCh. 1 - Prob. 19PCh. 1 - A 60-gallon water heated is initially filled with...Ch. 1 - Prob. 21PCh. 1 - Prob. 22PCh. 1 - Prob. 23PCh. 1 - Prob. 24PCh. 1 - Prob. 25PCh. 1 - Prob. 26PCh. 1 - Prob. 27PCh. 1 - Prob. 28PCh. 1 - A 5-m6-m8-m room is to be heated by an electrical...Ch. 1 - Prob. 30PCh. 1 - Prob. 31PCh. 1 - Air enters the duct of an air-conditioning system...Ch. 1 - Define thermal conductivity, and explain its...Ch. 1 - Prob. 34CPCh. 1 - Which is a better heat conductor, diamond or...Ch. 1 - How do the thermal conductivity of gases and...Ch. 1 - Why is the thermal conductivity of superinsulation...Ch. 1 - Why do we characterize the heat conduction ability...Ch. 1 - Prob. 39CPCh. 1 - What are the mechanisms of heat transfer? How are...Ch. 1 - Write down the expression for the physical laws...Ch. 1 - How does heat conduction differ from convection?Ch. 1 - Does any of the energy of the sun reach the earth...Ch. 1 - How does forced convection differ from natural...Ch. 1 - What is the physical mechanism of heat conduction...Ch. 1 - Consider heat transfer a windowless wall of house...Ch. 1 - Consider heat loss through two walls of house on a...Ch. 1 - Consider two houses that are identical except that...Ch. 1 - Consider two walls of a house that are identical...Ch. 1 - Define emissivity and absorptivity. What is...Ch. 1 - What is a blackbody? How do real bodies differ...Ch. 1 - A wood slab with a thickness 0.05 m is subjected...Ch. 1 - Prob. 53PCh. 1 - The inner and outer surfaces of a 0.5-cm thick...Ch. 1 - Prob. 55PCh. 1 - Prob. 56PCh. 1 - The north wall of an electrically heated home is...Ch. 1 - Prob. 58PCh. 1 - Prob. 59PCh. 1 - Prob. 60PCh. 1 - A concreate wall a surface area of 20 m2 and a...Ch. 1 - Prob. 62PCh. 1 - Prob. 63PCh. 1 - Prob. 64EPCh. 1 - Prob. 65EPCh. 1 - Air at 20C with a convection heat transfer...Ch. 1 - Prob. 67PCh. 1 - Prob. 68PCh. 1 - Prob. 69PCh. 1 - Prob. 70PCh. 1 - Prob. 71PCh. 1 - Prob. 72PCh. 1 - Prob. 73PCh. 1 - Prob. 74PCh. 1 - Prob. 75PCh. 1 - Prob. 76EPCh. 1 - Prob. 77EPCh. 1 - Prob. 78PCh. 1 - Prob. 79PCh. 1 - Prob. 80PCh. 1 - Prob. 81PCh. 1 - Prob. 82PCh. 1 - Using the conversion factors between W and Btu/h,...Ch. 1 - The outer surface of a spacecraft in space has an...Ch. 1 - Consider a person whose expose surface are is 1.7...Ch. 1 - Prob. 86PCh. 1 - Two surfaces, one highly polished and the other...Ch. 1 - A spherical interplanetary probe with a diameter...Ch. 1 - Prob. 89PCh. 1 - Can all three modes of heat transfer occur...Ch. 1 - Can a medium involve (a) conduction and...Ch. 1 - The deep human body temperature of a healthy...Ch. 1 - We often turn the fan on in summer to help us...Ch. 1 - Prob. 94PCh. 1 - Prob. 95PCh. 1 - Prob. 96PCh. 1 - An electronic package with a surface area of 1 m2...Ch. 1 - Consider steady heat transfer between two large...Ch. 1 - Prob. 99PCh. 1 - Prob. 100PCh. 1 - A 2-in-diameter spherical ball whose surface is...Ch. 1 - Prob. 102PCh. 1 - A 3-m-internal-diameter spherical tank made of...Ch. 1 - Prob. 104PCh. 1 - Solar radiation is incident on a 5-m2 solar...Ch. 1 - Prob. 106PCh. 1 - Prob. 107PCh. 1 - Prob. 108PCh. 1 - Prob. 109EPCh. 1 - An AISI 304 stainless steel sheet is going through...Ch. 1 - Prob. 111PCh. 1 - Prob. 112CPCh. 1 - Prob. 113PCh. 1 - Prob. 114PCh. 1 - Prob. 115PCh. 1 - Prob. 116PCh. 1 - Prob. 117PCh. 1 - Why is the metabolic rate of women, in general,...Ch. 1 - What is asymmetric thermal radiation How does it...Ch. 1 - How do (a) draft and (b) cold floor surfaces cause...Ch. 1 - Prob. 121CPCh. 1 - Why is it necessary to ventilate buildings? What...Ch. 1 - Consider a house in Atlanta, Georgia, that is...Ch. 1 - Prob. 124PCh. 1 - Prob. 125PCh. 1 - Prob. 126PCh. 1 - A 4m5m6m and room is to be heated by one ton (1000...Ch. 1 - Engine valves (cp=440J/kg.Kandp=7840kg/m3) are to...Ch. 1 - Prob. 129PCh. 1 - Prob. 130PCh. 1 - A 0.3 -cm-thick, 12-cm-high, and 18-cm-long...Ch. 1 - A 40-cm-long, 800-W electric resistance heating...Ch. 1 - It is well known that wind makes the cold air feel...Ch. 1 - An engine block with a surface area measured to be...Ch. 1 - Prob. 135PCh. 1 - Prob. 136PCh. 1 - Prob. 137PCh. 1 - Consider a person standing in a room maintained at...Ch. 1 - Prob. 139PCh. 1 - Prob. 140PCh. 1 - Prob. 141PCh. 1 - Prob. 142PCh. 1 - Prob. 143PCh. 1 - Prob. 144PCh. 1 - Prob. 145PCh. 1 - Prob. 146PCh. 1 - A 2-kW electric resistance heater submerged in...Ch. 1 - Prob. 148PCh. 1 - A cold bottled drink (m=2.5kg,cp=4200J/kg.K) at...Ch. 1 - Prob. 150PCh. 1 - Air enters a 12-m-long, 7-cm-diameter pipe at 50oC...Ch. 1 - Prob. 152PCh. 1 - Steady heat conduction occurs through a...Ch. 1 - Heat is lost through a brick wall (k=0.72W/m.K),...Ch. 1 - Prob. 155PCh. 1 - A 40-cm-long, 0.4-cm-diameter electric resistance...Ch. 1 - Prob. 157PCh. 1 - Over 90 percent of the energy dissipated by an...Ch. 1 - On a still, cleat night, the sky appears to be a...Ch. 1 - Prob. 160PCh. 1 - Prob. 161PCh. 1 - A persons head can be approximated as a...Ch. 1 - A person standing in a room loses heat to the air...Ch. 1 - Prob. 164PCh. 1 - Write an essay on how microwave ovens work, and...Ch. 1 - Using information form the utility bill for the...Ch. 1 - It is well know that at the same outdoor air...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q1. A solar collector consists of a horizontal copper tube of outer diameter 5 cm enclosed in a concentric thin glass tube of diameter 9 cm. Water is heated as it flows through the tube, and the annular space between the copper and the glass tubes is filled with air at 1 atm pressure. The emissivities of the tube surface and the glass cover are 0.85 and 0.9, respectively. During a clear day, the temperatures of the tube surface and the glass cover are measured to be 60°C and 40°C, respectively. Determine the rate of heat loss from the collector by natural convection and radiation per meter length of the tube.arrow_forwardAt midday when a black paved airport runway is directly under the Sun, it receives 800 W of solar power per square meter of surface from the Sun. If this hot surface loses energy only by radiation back into the atmosphere, what is its equilibrium temperature (in K)? You may use an emissivity of e = 1 for a black surfacearrow_forwardAn electrical cable with 20 mm in diameter and emissivity equal to 0.85 is installed inside a conduit whose inner surface and air in the its interior is at 30oC. The electrical resistivity of the cable, ρe (µΩ.m), is a function of its temperature, given by ρe=a[1+b(T-T0)], where a=0.0171 µΩ.m, b=0.00396 K-1 and T0= 25oC. The natural convection heat transfer coefficient is expressed by the relation h=cD-0.25(T-Tꚙ)0.25where c=1.21 W/(m1.75.K1.25) and D is the cable diameter. Electrical resistance per unit of cable length is R’e=ρe/Ac (Ac is the cross-sectional area). (a) For steady state operating conditions, estimate the maximum current that can be dissipated in the wire so that its temperature does not exceed 65oC;arrow_forward
- What happens when T < T0. That is, what if we have a medium that is at a lower temperature than the environment?arrow_forwardA wood stove is used to heat a single room. The stove is cylindrical in shape, with a diameter of D = 0.400 m and a length of L = 0.500 m, and operates at a temperature of T, = 200 °C. (a) If the temperature of the room is T, = 20°C, determine the amount of radiant energy delivered to the room by the stove each second if the emissivity of the stove is e = 0.920. (b) By definition, the R-value of a conducting slab is given by Atot(Th – To) Poond R = where Atot is the total surface area, Pcond is the power loss by conduction through the slab, Th and Te are the temperatures on the hotter and cooler sides of the slab. If the room has a square shape with walls of height H = 2.40 m and width W = 7.60 m, determine the R-value of the walls and ceiling required to maintain the room temperature at T = 20°C if the outside temperature is T, = 0°C. Note that we are ignoring any heat conveyed by the stove via convection and any energy lost through the walls and windows via convection or radiation.arrow_forwardi need the answer quicklyarrow_forward
- 20. PLEASE ANSWER ASAParrow_forwardCalculate the amount of radiation emitted for a unit surface (1 m2 ) forthe following situations: (a) a hot pavement in Arizona at 50° C and ε ≈ 0.8, (b) a hood of a car at 40° C and ε ≈ 0.9, and (c) a sunbather at 38° C and ε ≈ 0.9. Express your answers in both SI and U.S. Customary units.arrow_forwardIf the temperature of a solid surface changes form 27°C to 627°C, then its emissive power changes in the ratio ofarrow_forward
- Which of the following provides the basis of radiation heat transfer? O Fourier's Law O Newton's Law O Stefan-Boltzmann Law O Toricelli's Principlearrow_forwardA cordless microphone emits sound with an average power output of 73.9 W. Calculate the distance (in meters) at which the intensity of the sound is 1 x 10-8 W/m2arrow_forwardThe Stefan-Boltzmann equation of thermal radiation applicable for the black body is given by which of the following equation; O a. gemit = EGAT O b. qemit = EAT O c. Gemit = OT Od. qemit = EoTarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license