It is well known that wind makes the cold air feel much colder as a result of the wind-chill effect that is due to the increase in the convection heat transfer coefficient with increasing air velocity. The wind-chill effect is usually expressed in terms of the wind-chill temperature (WCT), which is the apparent temperature felt by exposed skin. For an outdoor air temperature of 0 o C, for example, the wind-chill temperature is − 5 o C with 20 km/h winds and − 9 o C with 60 km/h winds. That is, a person exposed to 0 o C windy air at 20 km/h will feel as cold as a person exposed to − 5 o C calm air (air motion under 5 km/h). For heat transfer purposes, a standing man can be modeled as a 30-cm-diameter, 170-cm-long vertical cylinder with both the top and bottom surfaces insulated and with the side surface at an average temperature of 34 o C . and For a convection heat transfer coefficient of 15 W/m 2. K, determine the rate of heat loss from this man by convection in still air at 20 o C . and What would your answer be if the convection heat transfer coefficient is increased to 30 W/m 2. K as a result of winds? What is the wind-chill temperature in this case?
It is well known that wind makes the cold air feel much colder as a result of the wind-chill effect that is due to the increase in the convection heat transfer coefficient with increasing air velocity. The wind-chill effect is usually expressed in terms of the wind-chill temperature (WCT), which is the apparent temperature felt by exposed skin. For an outdoor air temperature of 0 o C, for example, the wind-chill temperature is − 5 o C with 20 km/h winds and − 9 o C with 60 km/h winds. That is, a person exposed to 0 o C windy air at 20 km/h will feel as cold as a person exposed to − 5 o C calm air (air motion under 5 km/h). For heat transfer purposes, a standing man can be modeled as a 30-cm-diameter, 170-cm-long vertical cylinder with both the top and bottom surfaces insulated and with the side surface at an average temperature of 34 o C . and For a convection heat transfer coefficient of 15 W/m 2. K, determine the rate of heat loss from this man by convection in still air at 20 o C . and What would your answer be if the convection heat transfer coefficient is increased to 30 W/m 2. K as a result of winds? What is the wind-chill temperature in this case?
It is well known that wind makes the cold air feel much colder as a result of the wind-chill effect that is due to the increase in the convection heat transfer coefficient with increasing air velocity. The wind-chill effect is usually expressed in terms of the wind-chill temperature (WCT), which is the apparent temperature felt by exposed skin. For an outdoor air temperature of
0
o
C,
for example, the wind-chill temperature is
−
5
o
C
with 20 km/h winds and
−
9
o
C
with 60 km/h winds. That is, a person exposed to
0
o
C
windy air at 20 km/h will feel as cold as a person exposed to
−
5
o
C
calm air (air motion under 5 km/h).
For heat transfer purposes, a standing man can be modeled as a 30-cm-diameter, 170-cm-long vertical cylinder with both the top and bottom surfaces insulated and with the side surface at an average temperature of
34
o
C
.
and For a convection heat transfer coefficient of 15 W/m2. K, determine the rate of heat loss from this man by convection in still air at
20
o
C
.
and What would your answer be if the convection heat transfer coefficient is increased to 30 W/m2. K as a result of winds? What is the wind-chill temperature in this case?
a problem existed at the stocking stations of a mini-load AS/RS (automated storage and retrieval system) of a leading electronics manufacturer (Fig.1). At these stations, operators fill the bin delivered by the crane with material arriving in a tote over a roller conveyor. The conveyor was designed at such a height that it was impossible to reach the hooks comfortably even with the tote extended. Furthermore, cost consideration came into the picture and the conveyor height was not reduced. Instead, a step stool was considered to enable the stocker to reach the moving hooks comfortably. The height of the hooks from the floor is 280.2 cm (AD). The tote length is 54.9 cm. The projection of tote length and arm reach, CB = 66.1 cm. a) What anthropometric design principles would you follow to respectively calculate height, length, and width of the step to make it usable to a large number of people? b) What is the minimum height (EF) of the step with no shoe allowance? c) What is the minimum…
Qu. 5 Composite materials are becoming more widely used in aircraft industry due to their high strength, low weight and excellent corrosion resistant properties. As an engineer who is given task to design the I beam section of an aircraft (see Figure 7) please, answer the following questions given the material properties in Table 3.
Determine the Moduli of Elasticity of Carbon/Epoxy, Aramid/Epoxy, and Boron /Epoxy composites in the longitudinal direction, given that the composites consist of 25 vol% epoxy and 75 vol% fiber.
What are the specific moduli of each of these composites?
What are the specific strengths (i.e. specific UTS) of each of these composites?
What is the final cost of each of these composites?please show all work step by step problems make sure to see formula material science
Mueh
Battery operated train
Coll
160,000kg 0.0005 0.15 5m² 1.2kg/m³
CD
Af Pair
19
пре neng
0.98 0.9
0.88
Tesla Prated
Tesla Trated "wheel ng
Joxle
270 kW
440NM
0,45m 20
8.5kg m2
the middle
Consider a drive cycle of a 500km trip with 3 stops in
Other than the acceleration and deceleration
associated with the three stops, the tran maintains
constat cruise speed velocity of 324 km/hr. The
tran will fast charge at each stop for 15 min at a
rate Peharge = 350 kW
ΟΙ
15MIN
Stop
w charging
(350kW)
(ผม
τ
(AN
GMIJ
t
6M
1) HOW MUCH DISTANCE dace is covered DURING THE
ACCELERATION TO 324 km/hr?
2)
DETERMINE HOW LONG (IN seconds) the tran will
BE TRAVELING AT FULL SPEED
2
?
3) CALCULATE THE NET ENERGY GAW PER STOP
ete
Chapter 1 Solutions
Heat and Mass Transfer: Fundamentals and Applications
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.