Solutions for Engineering Electromagnetics
Problem 3.2P:
An electric field in space is E=(5z2/C0)azV/m. find the total charge a cube, centered at the origin,...Problem 3.3P:
Consider an electric dipole in free space, consisting of point charge q at location 2 = +d'2, and...Problem 3.4P:
An electric field in free space is E=(5z3/0)z V/m. Find the total charge contained within a sphere...Problem 3.5P:
A volume charge distribution in free space is characterized by the density pv=q2Adexp(z/d) where d...Problem 3.8P:
Use Gauss, law in integral form to show that an inverse distance field in spherical coordinates, D=...Problem 3.9P:
A sphere of radius a free space contains charge of density pv=p0r/a, where p0 is a constant, (a)...Problem 3.10P:
An infinitely long cylindrical dielectric of radius b contains charge within as volume of density...Problem 3.11P:
Consider a cylindrical charge distribution having infinite length in Z, but which has a radial...Problem 3.12P:
The sun radiates a tota1 power of about 3.86 Ă—1024 watts (W). If we imagine the suns surface to be...Problem 3.13P:
Spherical surfaces at r = 2, 4, and 6 m carry uniform surface charge densities of 20 nC/m2, -4...Problem 3.15P:
Volume charge density is located as follows; pv=0 for p<1 mm and for p>2 mm, pv=4p đ�œ‡C/m3 for 1)...Problem 3.16P:
An electric flux density is given by D=D0aP, where D 0 is a given constant, (a) what charge density...Problem 3.18P:
State whether the divergence of the following vector fields is positive, negative, or zero (a) the...Problem 3.19P:
A spherical surface of radius 3 mm is centered at P(4,1,5) in free space. Let D=xax C/m2. Use the...Problem 3.20P:
A radial electric field distribution in free space is given in spherical coordinates as:...Problem 3.22P:
(a) A flux density field is given as F1 = 5 az. Evaluate the outward flux of F 1 through the...Problem 3.23P:
(a) A point charge Q lies at the origin. Show that div D is zero everywhere except at the origin....Problem 3.25P:
Within the spherical shell, 3D= 5(r-3)3a,C/m2 .(a) What is the volume charge density at r=4? (b)...Problem 3.26P:
If we have a perfect gas of mass density Px kg/m,3, and we assign a velocity U m/s to each...Problem 3.27P:
Consider a slab of material containing a volume charge distribution throughout. The slab is of...Browse All Chapters of This Textbook
Chapter 1 - Vector AnalysisChapter 2 - Coulomb’s Law And Electric Field IntensityChapter 3 - Electric Flux Density, Gauss’s Law, And DivergenceChapter 4 - Energy And PotentialChapter 5 - Conductors And DielectricsChapter 6 - CapacitanceChapter 7 - The Steady Magnetic FieldChapter 8 - Magnetic Forces, Materials, And InductanceChapter 9 - Time-varying Fields And Maxwell’s EquationsChapter 10 - Transmission Lines
Book Details
First published just over 50 years ago and now in its Eighth Edition Bill Hayt and John Buck’s Engineering Electromagnetics is a classic text that has been updated for electromagnetics education today. This widely-respected book stresses fundamental conce
Sample Solutions for this Textbook
We offer sample solutions for Engineering Electromagnetics homework problems. See examples below:
Chapter 1, Problem 1.1PGiven: The value of E is E=(Ar)sinθaθ. The value of H is H=(Br)sinθaϕ The expression for S is...Concept used: Write the expression for the x -component of the rectangular system in term of...Chapter 1, Problem 1.23PChapter 2, Problem 2.1PChapter 2, Problem 2.7PChapter 2, Problem 2.17PChapter 2, Problem 2.26PGiven: The central charge Q1 is located at the origin and a radius of the hemisphere is a while...
Chapter 3, Problem 3.15PChapter 3, Problem 3.20PChapter 3, Problem 3.30PChapter 4, Problem 4.1PGiven: V(ρ)=a2ρ0e−ρaε0 Concept used: E=−∇V Calculation: Formula for electric field is formula shown...Chapter 4, Problem 4.24PGiven Information: The current density is, J=−104[sin(2x)e−2yax+cos(2x)e−2yay] kA/m2. Calculation:...Chapter 5, Problem 5.20PChapter 5, Problem 5.22PCalculation: The ratio of outer radius b to inner radius a in terms of the ratio of plate separation...Chapter 6, Problem 6.31PCalculation: The Poisson's equation is defined for z<b boundary condition (where b is the radius...Calculation: The general solution of Laplace's equation is written as, V=C1ϕ+C2 ...... (1) Here, ϕ...Calculation: The Poisson's equation (generalization of Laplace equation) is defined for r<c...Chapter 7, Problem 7.1PGiven: The given configuration is I = 1A Range is −h<z<h. Calculation: The figure for the loop...Given: The radius of the hollow cylindrical shell is 'a' which is centered on the z -axis and it...Given: Total current carried by cylindrical shell is I=50A Shell is defined by 1 cm < ρ <1.4...Chapter 7, Problem 7.38PChapter 8, Problem 8.1PGiven Information: Square loop is given as,. . The torque is about the origin A(0,0,0) in the field...Chapter 8, Problem 8.27PGiven Information: The toroid is having square cross section, 2.5 cm<ρ<3.5 cm , −0.5...Given Information: The given circuit is shown below: B=0⋅2cos120πtT Calculation: flux(ϕ)=π(0⋅15)2β...Given: B=B0cos(ωt)cos(k0z) ay Wb/m2 Medium for magnetic flux density is free space. Concept used:...Given Information: Breadth, b = 4 cm Diameter, d = 8 mm Magnetic field, H=5cos(109t−βz)ay A/m...Chapter 10, Problem 10.1PChapter 10, Problem 10.5PChapter 10, Problem 10.14PChapter 10, Problem 10.15PChapter 10, Problem 10.20PChapter 11, Problem 11.1PChapter 11, Problem 11.6PChapter 11, Problem 11.11PChapter 11, Problem 11.12PGiven: A uniform plane wave in air Ex1+=Ex10+cos(1010t−βz) V/m incident normally on copper surface...Given: Ex1+=10cos( ωt−15z) V/m And β=15 The plane z=0 defines the boundary which is there in between...Given: Two regions with region 1 : z<0 and region 2 : z>0 are perfect dielectrics. Radian...Given: Refractive index of glass n=1.45 Glass thickness =λ2 Concept Used: Calculate reflection...Chapter 13, Problem 13.1PChapter 13, Problem 13.7PChapter 13, Problem 13.22PChapter 14, Problem 14.1PGiven: The following parameters are given: λ=2π m, d=0.1 m and (x=0, y=1000, z=0). Concept Used:...Given: The following information is given: r=100, θ=900,ϕ=300. The radiation field Eθs is given by,...
More Editions of This Book
Corresponding editions of this textbook are also available below:
Engineering Electromagnetics
6th Edition
ISBN: 9780071202299
Engineering Electromagnetics
6th Edition
ISBN: 9780072303216
Engineering Electromagnetics
6th Edition
ISBN: 9780071181624
Engineering Electromagnetics
5th Edition
ISBN: 9780070274075
Engineering Electromagnetics - 8th Edition
8th Edition
ISBN: 9780073380667
Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Loose Leaf For Engineering Electromagnetics
9th Edition
ISBN: 9781260472370
Engineering Electromagnetics with CD
7th Edition
ISBN: 9780073104638
Related Electrical Engineering Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.