Concept explainers
A uniform plane wave at frequency f= 100 MHz propagates in a material having conductivity c = 3.0 S/m and dielectric constant đ�œ–r' = 8.00. The wave carries electric field amplitude E0 = 100 V/m. (a) Calculate the loss tangent and determine whether the medium would qualify as a good dielectric or a good conductor, (b) Calculate a, đ�›½, and
(a)
The loss tangent and whether the material is good dielectric or good conductor.
Answer to Problem 11.11P
The value of loss tangent is
Explanation of Solution
Calculation:
The line loss tangent is given by
Here,
The permeability
Here,
Substitute equation (2) in equation (1).
The conversion from
The conversion of
Hence, the frequency is,
Radial frequency
Here,
Substitute
Substitute
Since, the value is greater than 10; the material is a good conductor.
Conclusion:
Therefore, the value of loss tangent is
(b)
The attenuation coefficient
Answer to Problem 11.11P
The attenuation coefficient
Explanation of Solution
Calculation:
The value of
Here,
The value of
Here,
Substitute
For a good conductor, the value of
Hence, the phase constant
The value of wave impedance is given by
Substitute
For a good conductor, the value of impedance angle is
The wave impedance
Conclusion:
Thus, attenuation coefficient
(c)
The electric field in phasor form.
Answer to Problem 11.11P
The phasor expression of electric field is
Explanation of Solution
Calculation:
The electric field in phasor form is given by
Here,
Substitute
Conclusion:
The phasor expression of electric field is
(d)
The magnetic field strength in phasor form.
Answer to Problem 11.11P
The magnetic field strength in phasor form is
Explanation of Solution
Calculation:
The magnetic field strength in phasor form is given by,
Substitute
Conclusion:
Thus, the magnetic field strength in phasor form is
(e)
The time averaging Poynting vector.
Answer to Problem 11.11P
The time averaging Poynting vector is
Explanation of Solution
Calculation:
The time averaging Poynting vector is given by
Here,
Substitute
Conclusion:
The time averaging Poynting vector is
(f)
The6 dB material thickness at which the wave power drops to 25 % of its value on entry.
Answer to Problem 11.11P
The
Explanation of Solution
Calculation:
The power loss in dB can be given by
Here,
Substitute
The intensity of the wave is represented by the Poynting vector. In this case, the Poynting vector changes in the direction of wave propagation, with the factor of
Taking intensity in the term of Poynting vector,
Conclusion:
Thus, the 6-dB material thickness is
Want to see more full solutions like this?
Chapter 11 Solutions
Engineering Electromagnetics
- Don't use ai to answer I will report you answerarrow_forward5.7 Design an STS switch for 128 primary TDM signals of the CCITT hierarchy (30 voice channels per input). Blocking should be less than 0.002 and the loading is 0.2 erlang per channel. How many time slot interchange modules are needed? What is the complexity of the switch? Repeat Problem 5.7 for a TST design.arrow_forwardNeed a solution please according to the book the answers are , number of memory bits is 48000 and complexity is 1504arrow_forward
- For the single-line diagram in the image, convert the zero-, positive-, and negative-sequence reactance date to per-unit using the given base quantities. Use subtransient machine reactances.Then, USE PowerWorld Simulator, create the generator, transmission line, and transformer input data files.Next, run the Simulator to compute subtransient fault currents for (1) single line-to-ground, (2) line-to-line, and (3) double line-to-ground bolted faults at each bus. Assume 1.0 per unit prefault voltage and neglect prefault load currents and all losses. Note: L2 = 25 kmShow input data files (machine, transmission line and transformers), output data (fault currents, bus volatges and line currents), and screenshots of the Simulation.arrow_forwardAnswer True or False, then correct errors or explain if any: 1. The term pole in filter terminology refers to the feedback circuit. 2, A voltage shunt feedback with Ai-10, A-20, p 0.45, then Aif will be 1. 3. The integrator Op-Amp circuit can be used to produce square waves. 4. The equivalent circuit of the crystal oscillator is series and parallel (R, C) components. 5. The transistor in a class A power amplifier conducts for the entire input cycle. 6. Bypass capacitors in an amplifier determine the low and high-frequency responses. 7. The midrange voltage gain of an amplifier is 100. The input RC circuit has a lower critical frequency of 1 kHz. The actual voltage gain at f- 100 Hz is 100. 8. The Bessel filter types produce almost ripple frequency response. 9. RC phase shift oscillators are based on both positive and negative feedback circuits. 10. In a high-pass filter, the roll-off region occurs above the critical frequency,arrow_forwardQ.1. Answer True or False and correct errors if found 1. In a certain Op-Amp. if Ad=3500, Ac=0.35, the CMRR=100dB. 2. The voltage series feedback can increase both input and output impedances. 3. A two-pole Sallen-Key high-pass filter contains one capacitor and two resistors. 4. The main feature of a crystal oscillator is the high frequency operation. Each transistor in a class B power amplifier conducts for the entire input cycle. ✓ The Q-point must be centered on the load line for maximum class A output signal swing 7. The differentiator Op-Amp can convert the triangle waveform into sinewave. ✗Class AB power amplifier eliminates crossover distortion found in pure class A. 9. Wien-bridge oscillators are based on positive feedback circuits. 10. The band-reject filter is composed of multiplication of LPF and HPF.arrow_forward
- Solve by Hand not using Chatgpt or AIarrow_forwardA. The ECG signal of a person shows an irregular heartbeat of 180 beats per minute. You areasked to come up with a system that digitises this signal, using an analog-to-digitalconverter (ADC) with a reference voltage of 5 V. The digitised signal should have a resolutionof 1 mV or better.i) How many samples per second should your system take in order to fully capture the ECGsignal?ii) What should the ADC’s resolution in bits be? Alternatively, how many quantisation levelsshould the ADC have; or how many bits per sample should the ADC have? B. You have successfully designed your ECG signal capture device. However, the person fromQuestion A is being examined in a room with fluorescent lights which have recently startedbuzzing. The digitised ECG signal appears to be very noisy, and the medical doctors arefinding it difficult to diagnose the patient. You suspect interference from the electrical mainsis to blame.You also notice that the ECG signal is very faint and not making full use of…arrow_forwardControls Systemsarrow_forward
- Question about Controls Systemsarrow_forwardA chemical processing plant requires a simplified safety control system to monitor critical conditions in one of its reactors. The system must evaluate three key parameters and activate two response levels. A combinational circuit with 3 sensors and 2 alarms needs to be designed for this purpose. Sensors: A: Reactor temperature (0 = normal, 1 = high) B: Reactor pressure (0 = normal, 1 = high) C: Mixture pH level (0 = normal, 1 = out of range) Alarms: X: Warning alarm Y: Activation of the emergency shutdown system System requirements: 1. The warning alarm (X) should activate when: At least two parameters are out of range. • Or when the temperature is high (A = 1) and any other parameter is out of range. 2. The emergency shutdown system (Y) must activate when: • All parameters are out of range simultaneously (A = 1, B = 1, C=1). • Or when the temperature and pressure are high simultaneously (A = 1 and B = 1), regardless of the pH level. Request: 1. Design the logic circuit for this…arrow_forwardAn industrial soft drink production plant needs to implement a quality control system for its bottling line. The system must monitor four critical parameters and activate different alarms depending on the conditions detected. It is required to design a digital circuit with 4 inputs and 3 outputs for this purpose. Inputs: A: Carbonation level (0 = normal, 1 = high) B: Liquid temperature (0 = normal, 1 = elevated) C: Line pressure (0 = normal, 1 = low) D: Filling speed (0 = normal, 1 = low) Outputs: X: Minor adjustment alarm (triggered when an odd number of parameters are out of range) Y: Major revision alarm (triggered when at least three parameters are out of range) Z: Adjacent parameters alarm (triggered when exactly two adjacent parameters are out of range System requirements: 1. The minor adjustment alarm (X) should activate when an odd number of parameters are out of range, indicating the need to make minor adjustments to the process. 2. The major overhaul alarm (Y) should activate…arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,