Engineering Electromagnetics
9th Edition
ISBN: 9781260029963
Author: Hayt
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 11.29P
Consider a left circularly polarized wave in free space that propagates in the forward z direction. The electric field is given by the appropriate form of Eq. (100). Determine (a) the magnetic field pharos: H-; (b) an expression for the average power density in the wave in W/m2 by direct application of Eq. (77).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 2. The general wave equation for the electric field E:
a²Ē 1
aj
= -
Using the same approach, derive an equivalent equation for the magnetic field intensity vector H.
2
1)Find the skin depth of an electromagnetic wave which is incident from air to a conductor
and the frequency of the wave was 50 Hz with a permeability of 4.55*10-2.The conductivity in
the conductor is given as 2.22.
Select one:
a.0
b. 0.15
c. 0.35
d. 0.25
Chapter 11 Solutions
Engineering Electromagnetics
Ch. 11 - Show that Ex8 = Aej(k0z+) is a solution of the...Ch. 11 - Prob. 11.2PCh. 11 - Prob. 11.3PCh. 11 - Small antennas have low efficiencies (as will be...Ch. 11 - Consider two x-polarized waves that...Ch. 11 - A uniform plane wave has electric field E8 =...Ch. 11 - Prob. 11.7PCh. 11 - An electric field in free space is given in...Ch. 11 - An example of a nonuniform plane wave is a surface...Ch. 11 - Prob. 11.10P
Ch. 11 - A uniform plane wave at frequency f= 100 MHz...Ch. 11 - Repeat Problem 11.11, except the wave now...Ch. 11 - Let jk = 0.2 + jl.5 m -1 and y = 450 +J60 for a...Ch. 11 - Describe how the attenuation coefficient of a...Ch. 11 - A 10-GHz radar signal may be represented as a...Ch. 11 - Consider the power dissipation term. E.jdv, in...Ch. 11 - Prob. 11.17PCh. 11 - Given, a 100-MHz uniform plane wave in a medium...Ch. 11 - Prob. 11.19PCh. 11 - Prob. 11.20PCh. 11 - Prob. 11.21PCh. 11 - Prob. 11.22PCh. 11 - Prob. 11.23PCh. 11 - (a) Most microwave ovens operate at 2.45 GHz....Ch. 11 - Let jk = 0.2 + jl.5 m-1 and y\ = 450 +j60 Q for a...Ch. 11 - Prob. 11.26PCh. 11 - Prob. 11.27PCh. 11 - Prob. 11.28PCh. 11 - Consider a left circularly polarized wave in free...Ch. 11 - Prob. 11.30PCh. 11 - Prob. 11.31PCh. 11 - Prob. 11.32PCh. 11 - Given a wave for which Es=10ejxax+18ejxejayV/m. in...Ch. 11 - Given, a general elliptically polarized wave as...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4. The electric field intensity of a wave propagating through a certain nonmagnetic material is given by E = 2sin(3t-2x) (V/m). Find the direction of the wave, the phase velocity, the wavelength in the material, the relative permittivity of the material, and the magnetic field intensity.arrow_forwardImportant: You need to show calculations and steps of your solutions.arrow_forwardPlease solve give question asap.arrow_forward
- It is described in the electrical field of an electromagnetic wave propagating over a conductive medium. The electrical field amplitude of this electromagnetic wave is directed outward from the plane of the paper (choose this direction as z). Draw the shape? Derive the amplitude and phase angle expressions? Please describe every action you take with your own comment? Plot magnetic field amplitude expression as a function of time.?arrow_forwardPlease with the solution to this problem.arrow_forwarddon't give handwrittenarrow_forward
- The magnetic field of a wave propagating through a certain nonmagnetic material in the positive y direction has an amplitude of 30 mA/m and a frequency of 0 Hz . If the wave is polarized on the positive z direction and its wavelength is 12.6 meter, find the relative permittivity of the material. Assume the initial phase is 0. Select one: O a. 2.25 O b. 1.5 O C. 1.2 O d. 2.9 O e. 1 O f. 0arrow_forwarda material has a permittivity E=2E0 and permeability u=2u0. what is the ratio between the amplitudes of the electric and magnetic fields of a plane wave traveling in this material? get E/B.arrow_forwardA thin conducting wire is bent into the shape shown in the figure. The circular portion of the wire has radius 16.0 cm. The wire is in the plane of the screen and carries a current 3.50 A. What is the magnetic field at the center of the loop? (Give the magnitude in μT and select the direction from the options provided.) magnitude direction I -Select--- uT R 3arrow_forward
- The magnetic field phasor of a uniform plane wave traveling in a non-magnetic medium with intrinsic impedance. n = 100 N is Ĥ = (59 + 32)e-/4x (mA/m). a) What is the direction of wave propagation? b) Find the frequency of the signal. c) Is this wave traveling in lossy or lossless media? Show your work and explain. d) Find the associated electric field phasor.arrow_forwardi need to 4...5...6arrow_forward1. A transverse electromagnetic wave propagates in a nonmagnetic simple medium with E, (1) What is the phase velocity of this wave along the wavefront direction? (2) This wave has a frequency of 300 THz (1 THz = 10¹² Hz), what is the wavelength of this wave in the medium? = 4. (3) What is the wave impedance in this simple medium? (4) If this wave has an electric-field amplitude 377 V/m in the z direction, while propagating along -y direction, what is the magnitude and direction of the magnetic field intensity?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
What Is a Plane Wave? — Lesson 2; Author: EMViso;https://www.youtube.com/watch?v=ES2WFevGM0g;License: Standard Youtube License