
Concept explainers
Repeat Problem 11.11, except the wave now propagates in fresh water, having conductivity a = 10-3 S/m, dielectric constant er' = 80.0, and permeability u0.

(a)
The loss tangent and whether the material is good dielectric or good conductor.
Answer to Problem 11.12P
The value of loss tangent is
Explanation of Solution
Calculation:
The line loss tangent is given by
Here,
The permeability
Here,
The conversion from
The conversion of
Hence, the frequency
The angular frequency
Here,
Substitute
Substitute
Substitute
Since the value of loss tangent is less than 1, the material is a good dielectric.
Conclusion:
The value of loss tangent is

(b)
The attenuation coefficient
Answer to Problem 11.12P
The attenuation coefficient
Explanation of Solution
Calculation:
For a good dielectric, the value of
The value of phase constant
Here,
The value of
Substitute the value of equations (2) and (4) in equation (3).
Substitute
The value of wave impedance for a medium is given by
Here,
Substitute
The impedance angle for a good dielectric is
The value of
Conclusion:
Therefore, the attenuation coefficient

(c)
The electric field in phasor form.
Answer to Problem 11.12P
The phasor expression of electric field is
Explanation of Solution
Calculation:
The electric field
Here,
Substitute
Conclusion:
The phasor expression of electric field is

(d)
The magnetic field in phasor form
Answer to Problem 11.12P
The magnetic field strength in phasor form is
Explanation of Solution
Calculation:
The magnetic field strength
Here,
Substitute
Conclusion:
Therefore, the magnetic field in phasor form is

(e)
The time averaging Poynting vector.
Answer to Problem 11.12P
The time averaging Poynting vector is
Explanation of Solution
Calculation:
The time averaging Poynting vector is given by
Here,
Substitute
Conclusion:
Therefore, the time averaging Poynting vector is

(f)
The 6-dB material thickness at which the wave power drops to 25 % of its value.
Answer to Problem 11.12P
There is no 6-dB material thickness.
Explanation of Solution
The attenuation constant
Want to see more full solutions like this?
Chapter 11 Solutions
Engineering Electromagnetics
- Ideal op-amps. R)1= 16 kΩ and R)2= 56 kΩ. Find the voltage gain v_o/v_i of the circuit.arrow_forwardR is 12 kΩ . Find the Thevenin equivalent resistance.arrow_forwardAssuming an ideal op-amp, design an inverting amplifier with a gain of 25 dB having the largest possible input resistance under the constraint of having to use resistors no larger than 90 kΩ. What's the input resist?arrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardI hope the solution is on paper and not artificial intelligence. The subject is control systemarrow_forwardI hope the solution is on paper and not artificial intelligence.arrow_forward
- Vs R1 R2 ww ww 21x R3 Define the Thevenin equivalent of the above circuit where R1= 10 52, R2= 30 S2, R3 = 30 12, Vs = 70 V. VThevenin Number V RThevenin = Number Ωarrow_forwardR1 ww + R3 15+ www R2 R4 ww With the circuit diagram shown above and the values of the circuit elements listed below, find i1, 12, v1, and v2. Is = 10A, R1 = 7 ohms, R2 = 9 ohms, R3 = 7 ohms, R4 = 8 ohms (a) i1 = Number A (b) 12 = Number A (c) v1 = Number V (d) v2 = Number Varrow_forward15 ww 22 R2 ли i4 1+ V4 R1 ww R3 Solve for current i4 using superposition where R1 = 902, R2 = 36052, R3 = 360 V, and 15 = 5 A. 27052, V4 = i4 due to voltage source (V4) alone: Number A i4 due to current source (15) alone: Number A i4 = Numberarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





