
Concept explainers
A certain spherically symmetric charge configuration in free space produces an electric field given in spherical coordinates by
where p0 is a constant. (a) Find the charge density as a function of position, (b) Find the absolute potential as a function of position in the two regions, r < 10 and r > 10. (c) Check your result for part b by using the gradient, (d) Find the stored energy in the charge by an integral of the form of Eq. (42). (e) Find the stored energy in the field by an integral of the form of Eq. (44).

(a)
Charge density as a function of position.
Answer to Problem 4.24P
Explanation of Solution
Given:
Concept used:
Calculation:
Formula for charge density is:
Plugging value of E in the formula shown above:

(b)
Absolute potential as a function of position in the given regions.
Answer to Problem 4.24P
Explanation of Solution
Given:
Concept used:
Calculation:
Plugging value of E in the formula shown above:

(c)
To verify:
The result obtained in part (b) by method of the gradient.
Answer to Problem 4.24P
Explanation of Solution
Given:
Concept used:
Calculation:
Formula for electric field is shown above.
Plugging value of V in the formula shown above.
The result is same using both the methods.

(d)
The stored energy in the charge by an integral.
Answer to Problem 4.24P
Explanation of Solution
Given:
Concept used:
Calculation:
Formula for stored energy is shown above.
Plugging value of V and

(e)
The stored energy in the electric field by an integral.
Answer to Problem 4.24P
Explanation of Solution
Given:
Concept used:
Calculation:
Formula for stored energy is shown above.
Plugging value of E in the formula shown above.
Want to see more full solutions like this?
Chapter 4 Solutions
Engineering Electromagnetics
- Solve on paper not using AI or chatgptarrow_forwardPractice1 A single-phase step-down transformer of 83 kVA, nominal voltages 24kV/230 V, frequency 60 Hz is available.The following test parameters are available:Pfe = 216 W, Io = 2% Pcc = 1083 W, Vcc = 4% Determine:a. Parameters Rcc, Xcc and Rfe of the equivalent circuit referring to the secondary.b. Relative voltage drops. εcc, εrcc, εxccarrow_forwardA single-phase step-down transformer of 83 kVA, nominal voltages 24kV/230 V, frequency 60 Hz is available.The following test parameters are available:Pfe = 216W, Io = 2%, Pcc = 1083W, Vcc = 4% Determine: If the transformer is connected to 24 kV, a load Zc, fp = 0.866 in arrears, is installed in the secondary transformer, which consumes the nominal current. Calculate:• Transformer voltage regulation (perform calculations by PU's)• Maximum efficiency.arrow_forward
- The magnetic circuit shown in the figure is made of TRAN-COR material, the flow magnetic power on the right arm (BCDE) is 6 x 10 -4 Wb. (disregard marginal effects anddispersion) Calculate the current in the 200-turn coilarrow_forwardtheoretically and compare it with the test value. Report :- 1- Calculate the D.C. output Voltagearrow_forwardf 2- For resistive load, measured the output voltage by using oscilloscope, then sketch this wave.. 3- Measure the average values of Vɩ and Iɩ . 4- Repeat steps 2 & 3 but for R.L load.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





