Concept explainers
Given E = Exax + Eyay + Ez3z V/m, where EX, Ey, and Ez are constants, determine the incremental work required to move charge q through a distance 6: (a) along the positive x axis, (b) in a, direction at 45 degrees from the x axis in the first quadrant; (c) along a line in the first octant having equal x, y, and z components, and moving away from the origin.
(a)
The value of incremental work along positive
Answer to Problem 4.1P
The value of incremental work along positive
Explanation of Solution
Given:
The expression for electric field is
Value of
Concept used:
Write the expression for incremental work.
Here,
Calculation:
To calculate incremental work along
So value of
Substitute
Simplify further.
Conclusion:
Thus,value of incremental work along positive
(b)
The value of incremental work in direction at
Answer to Problem 4.1P
The value of incremental work in direction at
Explanation of Solution
Concept used:
Write the expression for incremental work in
Here,
Write the expression for component of length in
Here,
Write the expression for component of length in
Here,
Calculation:
Substitute
So value of component of length in
Substitute
So value of component of length in
Substitute
Simplify further.
Here,
Substitute
Simplify further.
Conclusion:
Thus,the value of incremental work in direction at
(c)
The value of incremental work along a line in the first octant having equal
Answer to Problem 4.1P
The value of incremental work along a line in the first octant having equal
Explanation of Solution
Concept used:
Write the expression for incremental work in
Here,
Write the expression for length in
Here,
Calculation:
Value of length is same in
So
Substitute
Rearrange for
Substitute
Simplify further.
Here,
Substitute
Simplify further.
Conclusion:
Thus,the value of incremental work along a line in the first octant having equal
Want to see more full solutions like this?
Chapter 4 Solutions
Engineering Electromagnetics
- A point charge of 12 nC is located at the origin. four uniform line charges are located in the x = 0 plane as follows: 80 nC/m at y = -1 and -5 m, -50 nC/m at y = -2 and -4 m. Find D at P(0,-3, 2), D = Blank 1ax + Blank 2ay + Blank 3az pC/m^2. Use one decimal place. Blank 1 Add your answer Blank 2 Add your answer Blank 3 Add your answerarrow_forwardfind the potential difference for each section and between the two ends of the wirearrow_forwardGraph: Take a graph sheet and divide it into 4 equal parts. Mark origin at the center of the graph sheet. Now mark +ve X-axis as Vf, -ve X-axis as Vr, +ve Y-axis as Ifand –ve Y-axis as Ir. Mark the readings tabulated for Si forward biased condition in first Quadrant and Si reverse biased condition in third Quadrant.arrow_forward
- Graph: Take a graph sheet and divide it into 4 equal parts. Mark origin at the center of the graph sheet. Now mark +ve X-axis as Vf, -ve X-axis as Vr, +ve Y-axis as Ifand –ve Y-axis as Ir. Mark the readings tabulated for Si forward biased condition in first Quadrant and Si reverse biased condition in third Quadrant.arrow_forwardPlease helparrow_forwardProblem 4. = 5 [nc] is on the x-axis at x₁ = -1 [m] and a second positive point charge q₂ = 5 [nc] is on the x-axis at x₂ = 3 [m]. a. Point A. d1 = b. |Ē₁A| = Point A is on the x-axis at XÃ = 7 [m]. Ẻ₁A d. Point A. d2 = e. = E2Al 2A C. by the charge q₁ at Point A. i + [N/C] Find the distance between 92 and 0 = = O+x O-x O+y O-y A positive point charge q₁ 2 92 Find the distance between q₁ and m Find the magnitude of E₁A [N/C] m f. by the charge q₂2 at Point A. Calculate ₁4 the electric field created 1A [N/C] g. Consider a point located 6 m from the origin, what will be the direction of the net electric field created by the charges at this point? 2 + x, m Find the magnitude of È 2A. [N/C] Calculate E24 the electric field created 2Aarrow_forward
- Problem 4. A positive point charge q₁5 [nc] is on the x-axis at x₁ = -1 [m] and a second positive point charge q₂ = 4 [nc] is on the x-axis at x₂ = 3 [m]. dl = b. a. and Point A. C. 91 Point A is on the x-axis at XA = 8 [m]. 0 = EzA=[ O+x O-x O+y O-y d. and Point A. d2 = 2 m 92 Find the distance between 91 6 created by the charge q₁ at Point A. E₁A= Ĵ [N/C] Find the distance between 92 Find the magnitude of È ₁A. [N/C] m x, m Calculate ₁4 the electric field 1A created by the charge 92 at Point A. E₂A î+ [N/C] g. Consider a point located 6 m from the origin, what will be the direction of the net electric field created by the charges at this point? Find the magnitude of È 2A. [N/C] Calculate E24 the electric field 2Aarrow_forwardQ5: Three charges are placed on the line as shown in the figure. The separation of the charges are rz = 0.5 m and r2a = 0.5m. If q luC, q = -2µC, and qs = 3µC, find: (a) the resultant force on charge qu. (b) the resultant force on charge q, and (c) the resultant force on charge q?arrow_forwardses aThis course O c.-1a 2.y.zaz O d.-1ax2.y.zay-y-az The velocity of electrons with current density 1 unit and a charge density of 2000 nC/m3 is Select one: O a. 5000 b. 2*106 Oc.0.2*106 d.0.5*106 Magnetic field lines of a wire carrying a current I (A) located at the z-axis ut of Select one: O a. Point towards the Extend radially from the WIte b. Point in the direction of the normal vector to the line OC. None of thesearrow_forward
- I know its downward. How about the second part?arrow_forwardUniform line charges of 0.4 µC/m and –0.4 µC/m are located in the x = 0 plane at y = -0.6 and y = 0.6 m, respectively. Find E at R(2, –3, 4). %3D Select your answer. N (626.35az – 242.19a,) V (-625.8a, – 241.6a,) m V (-625.8a, + 241.6a,) m N (626.35а, + 242.19а,)arrow_forwardThree charge distributions as follows: a uniform sheet at x=0 m with ps1 = (/31) nC/m2, a uniform sheet at x 4 m with Ps2 (-137) nC/m2, and a uniform line at x= 6 m, y 0 m with p -2 nC/m. The E at (2, 0, 8) m is:arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,