Concept explainers
A square filamentary differential current loop, dL on a side, is centered at the origin in the z = 0 plane in free space. The current I flows generally in the aD direction, (a) Assuming that r dL, and following a method similar to that in Section 4.7, show that
(b) Show that
The square loop is one form of a magnetic dipole.
(a)
To prove:
Explanation of Solution
Given info:
The centre of the square differential current loop origin in the plane z = 0. The current I is flowing in the
Calculation:
We assume that
Consider the figures below y-displaced elements. Considering the observation point is far than the lines
Figure 1
Figure 2
The net potential can be written as,
From figure (1) and figure (2) we can take,
We know that
By substituting the values in the above equation, we get,
We can write
We have considered
Thus, the relation is proved.
(b)
To prove:
Explanation of Solution
Given info:
The centre of the square differential current loop origin in the plane z = 0. The current I is flowing in the
Calculation:
We know that
Substitute
Now we have
Thus, the relation is proved.
Want to see more full solutions like this?
Chapter 7 Solutions
Engineering Electromagnetics
- 2. For the circuit shown, V = -10 V, R. = 10 kQ, R Calculate the operating point for the circuit shown. Use /, = 2.2 kQ, R = 3.6 kQ, R = 1 kQ. //ẞ and calculate /. for ẞ = 90. R1 m R2 22 Rc C Vec RE HEarrow_forwardQ2) [40p] Given the following message and carrier signal m(t) = 2 cos 2000лt + 6 sin 6000лt + 10 cos 10000лt c(t) = 20 cos 3200nt a) Determine the Hilbert transform of m(t). b) Determine the Single Side Band (SSB) AM signal usSB (t) which uses upper sideband. c) Plot the spectrum USSB(f) of USSB (t).arrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Don't use ai to answer I will report you answerarrow_forwardQ1) [60p] Given the following message and carrier signal m(t) = 2 cos 2000лt + 6 sin 6000πt + 10 cos 10000nt c(t) = 20 cos 3200лt The signal is passed through following nonlinear device and a subsequent filter to generate DSB-AM signal. The nonlinear device has the input-output relation y(t) = 3x²(t) + 2x(t). y(t) u(t) m(t). Non-Linear Device Filter c(t) a) Determine y(t). b) Determine type of filter (BPF, HPF, LPF) and the bandwidth to obtain a DSB-AM signal (Conventional AM) c) What is the modulation index? d) Determine power of m(t), u(t), and the ratio of power in side bands to carrier. e) Assume that modulation signal u(t) is going to be demodulated by an envelope detector. The resistor is selected as R = 1 KQ. What is the minimum and maximum value of capacitor for a good detector.arrow_forwardQuestion #4 (10 Marks): 0.5 F 1(t) 2Q HH vc(t) 100 cos(2t) V 4H2 For the above circuit, find: a) The total circuit impedance. b) The voltage vc(t). c) The current i(t). 0.25 Farrow_forward
- I have given a more clearer question, because the other was rejected, please I need handwritten solution for this questionsarrow_forwardNot use ai pleasearrow_forwardWhat is the Maximum amplitude for a 1 KHz sinusoidal input in a DM system (that prevents slope overload) that has been sampled at 10 times the Nyquist rate with a Step Size Δ= 0.20 volts?arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,