Engineering Electromagnetics
Engineering Electromagnetics
9th Edition
ISBN: 9781260029963
Author: Hayt
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.15P

Volume charge density is located as follows; pv=0 for p<1 mm and for p>2 mm, pv=4p đ�œ‡C/m3 for 1 ) Calculate the total charge in the region 0 1,0 1<2mm, (b ) Use Gauss’s law to determine Dp at p= p1. (c)Evaluate D pat p=p1. (c) Evaluate D pa at p=0.8 mm,1.6.

Expert Solution
Check Mark
To determine

(a)

Total charge in the given region.

Answer to Problem 3.15P

   8πL3[ρ13-10-9]μC

Explanation of Solution

Given Information:

   ρv= 0 for ρ<1mm and ρ>2mmρv= 4ρμ C/m3 for 1<ρ<2mm

Concept used:

   Q=0L0 0.001 ρ 1 4 ρ ρ dρ dφ  d 2

Calculation:

   Q=0L 0 [ 4 ρ 3 3 ]0.001ρ1dϕdz=0L0[ 4 ρ 1 3 3- 4 × 10 -9 3] dϕdz=0L[ 4 ρ 1 3 × 2π3- 4 × 2π × 10 -93] dz=[( 4 ρ 1 3 × 2π3- 4 × 2π × 10 -9 3)Z]0L=4 ρ13× 2π × 23-4 × 2π × 10-9 × L3=8πL3[ ρ13 - 10-9] μC

Conclusion:

Total charge is 8πL3[ ρ13 - 10-9] μC

Expert Solution
Check Mark
To determine

(b)

The value of Dρ at ρ = ρ1

Answer to Problem 3.15P

   Dρ1) = 4 (ρ13 - 10-9)1 μ C/m2

Explanation of Solution

Given Information:

   ρv= 0 for ρ<1mm and ρ>2mmρv= 4ρμ C/m3 for 1<ρ<2mm

Concept used:

   Q =8πL3[ ρ13 - 10-9] μC (Taken from part a)

Gauss's law, Q = 2πρLDρ

Calculation:

   DQQ 2πρ1L 8πL( ρ 1 3 -10 -9 ) 3 × 2πρ1L 43(ρ13 -10 -9) μC/m2

Conclusion:

Dρ at ρ = ρ1 is  43(ρ13-10-9) μC/m2

Expert Solution
Check Mark
To determine

(c)

The value of Dρ at different values of ρ.

Answer to Problem 3.15P

Dρ at ρ = 0.8mm is 0

Dρ at ρ = 1.6mm is 3.6×10-6 μ C/m2

Dρ at ρ = 2.4mm is 3.9 × 10-6 μC/m2

Explanation of Solution

Given Information:

   ρv= 0 for ρ<1mm and ρ>2mmρv= 4ρμ C/m3 for 1<ρ<2mm

Concept used:

   Dρ(ρ1) = 4(ρ13 -10 -9)1 μ C/m2

Calculation:

At ρ = 0.8mm , no charge is enclosed by a cylindrical Gaussian surface of that radius,

So Dρ (0.8 mm) = 0

At ρ = 1.6 mm ,

   Dρ(1.6 mm)4[ ( 0.0016 ) 3( 0 .0010 3 )]3( 0.0016)= 4[4 .09 × 10 -9 - 1 × 10 -9]0.0048=16 .36 × 10 -9 - 4 × 10 -90.0048=12 .36 × 10 -90.0048=3.6 × 10-6μ C/m3

At ρ = 2.4 mm , we evaluate the charge integral of part a from 0.001 to 0.002 and Gauss's law

is written as

   2πρDρ = 8πL3[( 0.002)2-( 0.001)2] μC7 .5 × 10 -53 = 2.5 × 10-5Dρ = 2 .5 × 10 -52πρ2 .5 × 10 -52π × 2.4 = 3.9 × 10-6 μC/m2

Conclusion:

Dρ at ρ = 0.8mm is 0

Dρ at ρ = 1.6mm is 3.6×10-6 μ C/m2

Dρ at ρ = 2.4mm is 3.9 × 10-6 μC/m2

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
"Based on a source, book, or expertise in the specialized field, I need a solution to the question." Write an Arduino program code that controls the intensity of each LED (Ascending and descending) connected to pins {3, 5, 6, 9, 10, 11} successively at an array method) an interval one of one second. (Hint use
"Based on a source, book, or expertise in the specialized field, I need a solution to the question." Write an Arduino program to control water tank levels, The 1st Tank level is monitored by ultrasonic sensor No.1, connected to pin Ao on the Arduino board and it's linked to a valve via port 7 to regulate the valve's opening and closing. Similarly, 2nd tank is monitored by ultrasonic sensor No.2, connected to pin A1, and linked to a valve through port 8. Follow the rules in the Table below to control valve and motor activation via port 13 with a 500 ms delay: TRIYAH UN Water level Tank Tank 1<500 (Threshold) Tank 2<300 Tank 1==500 Tank 2<300 Tank 1<500 Tank 2==300 Tank 1=500 Tank 2=300 Motor ON ON SON OFF Valve 1 ON OFF ON OFF Valve 2 ON ON OFF OFF
"Based on a source, book, or expertise in the specialized field, I need a solution to the question." 1985 Write an Arduino program to flash flash three LED's connected to pins (7, 9 & 11) respectively as shown in figure below: (Note: T₁-T3-5s & T₂=3s) LED₁ (pin 7) LED2 (pin 9) LED3 (pin 11) T₁ T2 T3 1406

Chapter 3 Solutions

Engineering Electromagnetics

Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Electric Charge and Electric Fields; Author: Professor Dave Explains;https://www.youtube.com/watch?v=VFbyDCG_j18;License: Standard Youtube License