Concept explainers
(a) Determine s on the transmission line of Figure 10.32. Note that the dielectric is air. (b) Find the input impedance. (c) If
Figure 10.32 See Problem 10.20.
(a)
The value ofs on the transmission line.
Answer to Problem 10.20P
The value of son the transmission line is 2.
Explanation of Solution
Given:
The given figure is shown below.
Concept Used:
The term s is calculated by
Calculation:
The reflection coefficient is
The magnitude of the reflection coefficient is,
The standing wave ratio is calculated as
Conclusion:
The value of s in the transmission line is 2.
(b)
The input impedance.
Answer to Problem 10.20P
The input impedance of the transmission line is
Explanation of Solution
Given:
The given figure is shown below.
Concept Used:
The input impedance is calculated by
Calculation:
The input impedance of the transmission line is calculated as
Let
Conclusion:
The input impedance of the transmission line is
(c)
The source current
Answer to Problem 10.20P
The source current is
Explanation of Solution
Given:
Calculation:
The source current is calculated by
Let
Conclusion:
Thus, the source current is
(d)
The value of L which produces maximum value for
Answer to Problem 10.20P
The value of L which produces maximum value for
Explanation of Solution
Given:
The given circuit is shown below.
Concept Used:
The maximum value of L is calculated by
Calculation:
The magnitude of the source current is,
Differentiating with respect to L,
Conclusion:
The value of L which produces maximum value for
(e)
The average power delivered by the source.
Answer to Problem 10.20P
The average power delivered by the source is,
Explanation of Solution
Given:
The given circuit is shown below.
Concept Used:
The average power is calculated by
Calculation:
Considering the real part only
Average power is calculated as
Conclusion:
Thus, the average power delivered by the source is,
(f)
Average power delivered to ZL.
Answer to Problem 10.20P
The average power delivered to the load is
Explanation of Solution
Given:
Concept Used:
The average power delivered is calculated by
Calculation:
Thus, the total power delivered to the load is
Conclusion:
Thus, the average power delivered to the load is
Want to see more full solutions like this?
Chapter 10 Solutions
Engineering Electromagnetics
- Solve this question step by step explain each step make it easy to understand how you got to the final answer. Thank you.arrow_forwardSolve this question step by step explain each step in detail and easy to understand thank you.arrow_forwardHello, can solve this question and explain the step by step to me to make it easy to understand the process.arrow_forward
- The parallel admittance of a 300 mile transmission line isYc=0+j6.87*10^-6 S/mileDetermine the ABCD constants of a shunt reactance that compensates for 60% of the total shunt admittance!arrow_forwardSolve this question step by step solution make it easy to understand explain each step and how you got the final answer please.arrow_forwardVcc R1 Rc ww R2 82 RE marrow_forward
- Don't use chatgptarrow_forwardSolve By Hand Do not using CHATGPT or AIarrow_forward4. Given the following Active Filter circuit: in= .8 sin wt +2 R1 w 1ΚΩ R2 10kQ C1 .001592µF + Rf ww ΚΩ + (+12v) VCC U1 + 741 Vo - Vcc (-12v) 1. Determine the following: a. The cutoff frequency (Fc) b. The Gain of the amplifier at a frequency equal to 100 Hz c. The GAIN of the amplifier at the cutoff frequency d. The peak-peak amplitude of Vo at a frequency equal to 100 Hz 2. Draw and label the Frequency Response Plot of "GAIN vs Frequency" specifying the GAIN at: a. f = .1Fc b. f = Fc C. f = 10Fcarrow_forward
- 1-1 Q4: Find the Z-transform including the region of convergence (ROC) of x(n) = πn-1 ejón u(n-1)arrow_forward2. For the circuit shown, V = -10 V, R. = 10 kQ, R Calculate the operating point for the circuit shown. Use /, = 2.2 kQ, R = 3.6 kQ, R = 1 kQ. //ẞ and calculate /. for ẞ = 90. R1 m R2 22 Rc C Vec RE HEarrow_forwardQ2) [40p] Given the following message and carrier signal m(t) = 2 cos 2000лt + 6 sin 6000лt + 10 cos 10000лt c(t) = 20 cos 3200nt a) Determine the Hilbert transform of m(t). b) Determine the Single Side Band (SSB) AM signal usSB (t) which uses upper sideband. c) Plot the spectrum USSB(f) of USSB (t).arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,