
(a)
Interpretation:
The structure of the molecule that corresponds to the given IUPAC name is to be drawn.
Concept introduction:
The rules for naming acid anhydrides are derived from the fact that an acid anhydride can be produced from two carboxylic acids in the dehydration reaction as shown below:
If the two R and R’ groups attached to the acid anhydride are the same, then the anhydride is symmetrical, but if they are different, the acid anhydride is unsymmetrical.
Symmetrical anhydrides are named according to the general form alkanoic anhydride in which the alkanoic portion corresponds to the specific
Unsymmetrical anhydrides are named according to the general form alkanoic alkanoic anhydride, where each alkanoic portion corresponds to different carboxylic acids that would be required to produce the anhydride. The two carboxylic acids follow the alphabetical order.
(b)
Interpretation:
The structure of the molecule that corresponds to the given IUPAC name is to be drawn.
Concept introduction:
The rules for naming acid anhydrides are derived from the fact that an acid anhydride can be produced from two carboxylic acids in the dehydration reaction as shown below:
If the two R and R’ groups attached to the acid anhydride are the same, then the anhydride is symmetrical, but if they are different, the acid anhydride is unsymmetrical.
Symmetrical anhydrides are named according to general form alkanoic anhydride where the alkanoic portion corresponds to the specific carboxylic acid that could undergo dehydration to produce the anhydride.
Unsymmetrical anhydrides are named according to the general form alkanoic alkanoic anhydride, where each alkanoic portion corresponds to different carboxylic acids that would be required to produce the anhydride. The two carboxylic acids follow the alphabetical order.
(c)
Interpretation:
The structure of the molecule is to be drawn that corresponds to the given IUPAC name.
Concept introduction:
The rules for naming acid anhydrides are derived from the fact that an acid anhydride can be produced from two carboxylic acids in the dehydration reaction as shown below:
If the two R and R’ groups attached to the acid anhydride are same, then the anhydride is symmetrical, but if they are different, the acid anhydride is unsymmetrical.
Symmetrical anhydride are named according to general form alkanoic anhydride where the alkanoic portion corresponds to the specific carboxylic acid that could undergo dehydration to produce the anhydride.
Unsymmetrical anhydrides are named according to the general form alkanoic alkanoic anhydride, where each alkanoic portion corresponds to different carboxylic acids that would be required to produce the anhydride. The two carboxylic acids follow the alphabetical order.
Substituents attached to the carbon chain of any carboxylic acid portion are written as prefix in the IUPAC name.
(d)
Interpretation:
The structure of the molecule is to be drawn that corresponds to the given IUPAC name.
Concept introduction:
The rules for naming acid anhydrides are derived from the fact that an acid anhydride can be produced from two carboxylic acids in the dehydration reaction as shown below:
If the two R and R’ groups attached to the acid anhydride are same, then the anhydride is symmetrical, but if they are different, the acid anhydride is unsymmetrical.
Symmetrical anhydride are named according to general form alkanoic anhydride where the alkanoic portion corresponds to the specific carboxylic acid that could undergo dehydration to produce the anhydride.
Unsymmetrical anhydrides are named according to the general form alkanoic alkanoic anhydride, where each alkanoic portion corresponds to different carboxylic acids that would be required to produce the anhydride. The two carboxylic acids follow the alphabetical order.
Substituents attached to the carbon chain of any carboxylic acid portion are written as prefix in the IUPAC name.

Want to see the full answer?
Check out a sample textbook solution
Chapter F Solutions
Organic Chemistry: Principles and Mechanisms (Second Edition)
- Determine the structures of the missing organic molecules in the following reaction: X+H₂O H* H+ Y OH OH Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. X Sarrow_forwardPredict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. No reaction. HO. O :☐ + G Na O.H Click and drag to start drawing a structure. XS xs H₂Oarrow_forwardWhat are the angles a and b in the actual molecule of which this is a Lewis structure? H H C H- a -H b H Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal groups may have slightly different sizes. a = b = 0 °arrow_forward
- What are the angles a and b in the actual molecule of which this is a Lewis structure? :0: HCOH a Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal that might be caused by the fact that different electron groups may have slightly different sizes. a = 0 b=0° Sarrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H OH O OH +H OH X Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structure of the missing organic molecule X. Click and drag to start drawing a structure.arrow_forwardIdentify the missing organic reactant in the following reaction: x + x O OH H* + ☑- X H+ O O Х Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H₂O) are not shown. In the drawing area below, draw the skeletal ("line") structure of the missing organic reactant X. Click and drag to start drawing a structure. Carrow_forward
- CH3O OH OH O hemiacetal O acetal O neither O 0 O hemiacetal acetal neither OH hemiacetal O acetal O neither CH2 O-CH2-CH3 CH3-C-OH O hemiacetal O acetal CH3-CH2-CH2-0-c-O-CH2-CH2-CH3 O neither HO-CH2 ? 000 Ar Barrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 2 2. n-BuLi 3 Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure.arrow_forwardPredict the products of this organic reaction: NaBH3CN + NH2 ? H+ Click and drag to start drawing a structure. ×arrow_forward
- Predict the organic products that form in the reaction below: + OH +H H+ ➤ ☑ X - Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Garrow_forwardPredict the organic products that form in the reaction below: OH H+ H+ + ☑ Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. ✓ marrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H H+ Y Z ☑ ☑ Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X, Y, and Z. You may draw the structures in any arrangement that you like, so long as they aren't touching. Molecule X shows up in multiple steps, but you only have to draw its structure once. Click and drag to start drawing a structure. AP +arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning

