General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 9.103CHP
Interpretation Introduction
Interpretation:
The height of the column when the air in the column is liquefied has to be calculated.
Concept Introduction:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answers and solutions may be handwritten or typed.
Each sketch below shows a flask with some gas and a pool of mercury in it. The gas is at a pressure of 1 atm. A J-shaped tube is connected to the bottom of the
flask, and the mercury can freely flow in or out of this tube. (You can assume that there is so much more mercury in the pool than can fit into the tube that
even if the J-tube is completely filled, the level of mercury in the pool won't change.)
Notice also that in the left sketch the J-tube is open at its other end, so that air from the atmosphere can freely flow. On the other hand, in the right sketch the
J-tube is closed at its other end, and you should assume there is no gas between the mercury and the closed end of the tube.
To answer this question, you must decide what the mercury level will be when the mercury finally stops flowing in or out of the tube. By moving the sliders back
and forth, you'll see different levels of mercury in the J-tube. Select the final correct level for each sketch.
1
1
2
I Don't Know
open tube…
169 kilopascals
354 kilopascals
68 kilopascals
143 kilopascals
| The National Oceanic and Atmospheric Association (NOAA) is sending up several weather balloons to collect
information about the upper atmosphere. In order to track their data, they must keep records of different
changes in the balloons. If a balloon containing 79.0 liters of helium at standard temperature and pressure is
sent up to the upper atmosphere and sends back readings of 925 °C and a pressure of 0.0110 atm what is the
new volume of the weather balloon?
Show Your Work
31500 L
8590000 L
41900 L
277000 L
You have responded to 11 of 12 questions.
Chapter 9 Solutions
General Chemistry: Atoms First
Ch. 9.1 - Yet another common measure of pressure is the unit...Ch. 9.1 - If the density of water is 1.00 g/mL and the...Ch. 9.1 - What is the pressure in atmospheres in a container...Ch. 9.1 - Prob. 9.4CPCh. 9.2 - Prob. 9.5CPCh. 9.3 - How many moles of methane gas, CH4, are in a...Ch. 9.3 - Prob. 9.7PCh. 9.3 - Prob. 9.8PCh. 9.3 - Prob. 9.9PCh. 9.3 - Prob. 9.10CP
Ch. 9.4 - Carbonate-bearing rocks like limestone (CaCO3)...Ch. 9.4 - Prob. 9.12PCh. 9.4 - Prob. 9.13PCh. 9.5 - What is the mole fraction of each component in a...Ch. 9.5 - What is the total pressure in atmospheres and what...Ch. 9.5 - Prob. 9.16PCh. 9.5 - Prob. 9.17CPCh. 9.6 - Calculate the average speed of a nitrogen molecule...Ch. 9.6 - At what temperature does the average speed of an...Ch. 9.7 - Prob. 9.20PCh. 9.7 - Prob. 9.21PCh. 9.8 - Assume that you have 0.500 mol of N2 in a volume...Ch. 9.9 - Prob. 9.23PCh. 9.9 - For ether, a partial pressure of 15 mm Hg results...Ch. 9.9 - Prob. 9.25PCh. 9 - Prob. 9.26CPCh. 9 - Prob. 9.27CPCh. 9 - Prob. 9.28CPCh. 9 - Prob. 9.29CPCh. 9 - Assume that you have a mixture of He (atomic...Ch. 9 - Prob. 9.31CPCh. 9 - Prob. 9.32CPCh. 9 - Prob. 9.33CPCh. 9 - Prob. 9.34CPCh. 9 - Prob. 9.36SPCh. 9 - Prob. 9.37SPCh. 9 - Prob. 9.38SPCh. 9 - Prob. 9.39SPCh. 9 - Prob. 9.40SPCh. 9 - Prob. 9.41SPCh. 9 - Assume that you have an open-end manometer filled...Ch. 9 - Assume that you have an open-end manometer filled...Ch. 9 - Prob. 9.44SPCh. 9 - Prob. 9.45SPCh. 9 - Prob. 9.46SPCh. 9 - Prob. 9.47SPCh. 9 - Prob. 9.48SPCh. 9 - Prob. 9.49SPCh. 9 - Prob. 9.50SPCh. 9 - Prob. 9.51SPCh. 9 - Prob. 9.52SPCh. 9 - Prob. 9.53SPCh. 9 - Prob. 9.54SPCh. 9 - Prob. 9.55SPCh. 9 - Prob. 9.56SPCh. 9 - Prob. 9.57SPCh. 9 - Prob. 9.58SPCh. 9 - Prob. 9.59SPCh. 9 - Prob. 9.60SPCh. 9 - Prob. 9.61SPCh. 9 - Prob. 9.62SPCh. 9 - Prob. 9.63SPCh. 9 - Prob. 9.64SPCh. 9 - Prob. 9.65SPCh. 9 - Prob. 9.66SPCh. 9 - Prob. 9.67SPCh. 9 - Prob. 9.68SPCh. 9 - Prob. 9.69SPCh. 9 - Prob. 9.70SPCh. 9 - Prob. 9.71SPCh. 9 - Prob. 9.72SPCh. 9 - Prob. 9.73SPCh. 9 - Prob. 9.74SPCh. 9 - Prob. 9.75SPCh. 9 - Prob. 9.76SPCh. 9 - Prob. 9.77SPCh. 9 - Prob. 9.78SPCh. 9 - Prob. 9.79SPCh. 9 - Prob. 9.80SPCh. 9 - Prob. 9.81SPCh. 9 - Prob. 9.82SPCh. 9 - Prob. 9.83SPCh. 9 - Prob. 9.84SPCh. 9 - Prob. 9.85SPCh. 9 - Prob. 9.86SPCh. 9 - Prob. 9.87SPCh. 9 - Prob. 9.88SPCh. 9 - Prob. 9.89SPCh. 9 - Prob. 9.90SPCh. 9 - Prob. 9.91SPCh. 9 - Prob. 9.92SPCh. 9 - Prob. 9.93SPCh. 9 - Prob. 9.94SPCh. 9 - Prob. 9.95SPCh. 9 - Prob. 9.96SPCh. 9 - Prob. 9.97SPCh. 9 - Prob. 9.98CHPCh. 9 - Prob. 9.99CHPCh. 9 - Prob. 9.100CHPCh. 9 - Prob. 9.101CHPCh. 9 - Prob. 9.102CHPCh. 9 - Prob. 9.103CHPCh. 9 - Prob. 9.104CHPCh. 9 - Prob. 9.105CHPCh. 9 - Prob. 9.106CHPCh. 9 - Prob. 9.107CHPCh. 9 - Prob. 9.108CHPCh. 9 - Prob. 9.109CHPCh. 9 - Prob. 9.110CHPCh. 9 - Prob. 9.111CHPCh. 9 - Prob. 9.112CHPCh. 9 - Prob. 9.113CHPCh. 9 - Prob. 9.114CHPCh. 9 - Prob. 9.115CHPCh. 9 - Prob. 9.116CHPCh. 9 - Prob. 9.117CHPCh. 9 - Prob. 9.118CHPCh. 9 - Prob. 9.119CHPCh. 9 - Prob. 9.120CHPCh. 9 - Prob. 9.121CHPCh. 9 - Prob. 9.122CHPCh. 9 - Prob. 9.123CHPCh. 9 - Prob. 9.124CHPCh. 9 - Prob. 9.125CHPCh. 9 - Prob. 9.126CHPCh. 9 - Prob. 9.127CHPCh. 9 - Prob. 9.128MPCh. 9 - Prob. 9.129MPCh. 9 - Prob. 9.130MPCh. 9 - The Rankine temperature scale used in engineering...Ch. 9 - Prob. 9.132MPCh. 9 - Combustion analysis of 0.1500 g of methyl...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A balloon filled with helium gas is found to take 6 hours to deflate to 50% of its original volume. How long will it take for an identical balloon filled with the same volume of hydrogen gas (instead of helium) to decrease its volume by 50%?arrow_forwardAnswer the following questions: (a) If XX behaved as an ideal gas, what would its graph of Z vs. P look like? (b) For most of this chapter, we performed calculations treating gases as ideal. Was this justified? (c) What is the effect of the volume of gas molecules on Z? Under what conditions is this effect small? When is it large? Explain using an appropriate diagram. (d) What is the effect of intermolecular attractions on the value of Z? Under what conditions is this effect small? When is it large? Explain using an appropriate diagram. (e) In general, under what temperature conditions would you expect Z to have the largest deviations from the Z for an ideal gas?arrow_forwardA sample of an ideal gas at 1.00 atm and a volume of 1.09 I was placed in a weighted balloon and dropped into the ocean. As the sample descended, the water pressure compressed the balloon and reduced its volume. When the pressure had increased to 80.0 atm, what was the volume of the sample? Assume that the temperature was held constant.arrow_forward
- What does the line separating the liquid phase from the gas phase represent?arrow_forwardHumidity is the percentage of partial pressure of water in air over the total possible water in the air. On the first day of the spring semester the humidity was 72%, but it did not feel humid outside. Calculate the partial pressure of water in air at this time and justify why it did not feel humid. You may find it helpful to compare the first day of the spring semester to the first day of the fall semester, where the humidity was 89% on the first day of class.arrow_forwardYou have a cylinder of argon gas at 12.4 atm pressure at 16°C. The volume of argon in the cylinder is 50.0 L. What would be the volume of this gas if you allowed it to expand to the pressure of the surrounding air (1.01 atm)? Assume the temperature remains constant. Volume =arrow_forward
- Driving a car causes the tires to get hot from friction. If you want to check to see if your tires need air, the service manual of your car warns you against checking the tire pressure when the tire is hot. Explain why, using your understanding of KMT.arrow_forwardPlease don't provide handwriting solutionarrow_forward1. A cylinder containing 15.0 L of helium gas at a pressure of 165 atm is to be used to fill party balloons. Each balloon must be filled to a volume of 2.0 L at a pressure of 1.1 atm. What is the maximum number of balloons that can be inflated? Assume that the gas in the cylinder is at the same temperature as the inflated balloons. (HINT: The “empty” cylinder will still contain helium at 1.1 atm.). 2. For a gas sample whose total pressure is 740 torr, what are the partial pressures if the moles of gas present are 1.3 mol of N2, 0.33 mol of O2, and 0.061 mol of Ar?arrow_forward
- A 1.0-L container of liquid nitrogen is kept in a closet measuring 1.0 m by 1.0 m by 2.0 m. Assuming that the container is completely full, that the temperature is 25.0 °C, and that the atmospheric pressure is 1.0 atm, calculate the percent (by volume) of air that is displaced if all of the liquid nitrogen evaporates. (Liquid nitrogen has a density of 0.807 g/mL.)arrow_forwardClassify the substance shown in the sketch below. You can click the other tabs in the sketch to get a magnified view. Be sure you check all the boxes on right-hand side that are correct for this substance. Note for advanced students: in some sketches the distance between particles has been exaggerated to make it easier to see each individual particle. normal substance 1000X 10,000,000X classification (check all that apply) gas Oliquid solid Oelement Ocompound Omixture Osolution Jpure substance Ohomogeneous mixture mixture Ohe Xarrow_forwardNonearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning