Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
Chapter 8, Problem 8.3.9P
To determine
(a)
The design of a simply supported beam for the given conditions by using LRFD.
To determine
(b)
The design of an all-bolted, double-angle connection by using bearing-type bolts.
To determine
(c)
The revised design of connection by considering eccentricity.
To determine
(d)
The detailed sketch of the designed connection
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The member shown in Figure has lateral support at points A, B, and C. Bending is about the strong axis. The loads are service loads, and the uniform load includes the weight of the member. A992 steel is used. Is the member adequate?
a. Use LRFD.
b. Use ASD.
Q3) The beam shown in Figure below has lateral support at the ends only. The concentrated
loads are live loads. Use A992 steel and select a W shape. (Do not check deflections. Use
C-1).
23 k
25 k
ttst
The beam shown in Figure is a two-span beam with a pin (hinge) in the center of the left span,making the beam statically determinate. There is continuous lateral support. The concentratedloads are service live loads. Determine whether a W12 × 79 of A992 steel is adequate.a. Use LRFD.b. Use ASD.
Chapter 8 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Ch. 8 - Prob. 8.2.1PCh. 8 - Prob. 8.2.2PCh. 8 - A plate is used as a bracket and is attached to a...Ch. 8 - Prob. 8.2.4PCh. 8 - Prob. 8.2.5PCh. 8 - Prob. 8.2.6PCh. 8 - Prob. 8.2.7PCh. 8 - Prob. 8.2.8PCh. 8 - Prob. 8.2.9PCh. 8 - Prob. 8.2.10P
Ch. 8 - Prob. 8.2.11PCh. 8 - Prob. 8.2.12PCh. 8 - Prob. 8.2.13PCh. 8 - Prob. 8.3.1PCh. 8 - Prob. 8.3.2PCh. 8 - Prob. 8.3.3PCh. 8 - Prob. 8.3.4PCh. 8 - Prob. 8.3.5PCh. 8 - Prob. 8.3.6PCh. 8 - Prob. 8.3.7PCh. 8 - Prob. 8.3.8PCh. 8 - Prob. 8.3.9PCh. 8 - Prob. 8.3.10PCh. 8 - Use an elastic analysis and determine the maximum...Ch. 8 - Use an elastic analysis and determine the maximum...Ch. 8 - Use an elastic analysis and determine the maximum...Ch. 8 - Prob. 8.4.4PCh. 8 - Prob. 8.4.5PCh. 8 - Prob. 8.4.6PCh. 8 - Use an elastic analysis and compute the extra load...Ch. 8 - Use an elastic analysis and compute the extra load...Ch. 8 - Prob. 8.4.9PCh. 8 - Prob. 8.4.10PCh. 8 - Prob. 8.4.11PCh. 8 - Prob. 8.4.12PCh. 8 - Prob. 8.4.13PCh. 8 - Prob. 8.4.14PCh. 8 - Prob. 8.4.15PCh. 8 - Prob. 8.4.16PCh. 8 - Prob. 8.4.17PCh. 8 - Prob. 8.4.18PCh. 8 - a. Use LRFD and design a welded connection for the...Ch. 8 - Prob. 8.4.20PCh. 8 - Prob. 8.5.1PCh. 8 - Prob. 8.5.2PCh. 8 - Prob. 8.5.3PCh. 8 - Prob. 8.5.4PCh. 8 - Prob. 8.5.5PCh. 8 - Prob. 8.6.1PCh. 8 - Prob. 8.6.2PCh. 8 - Prob. 8.6.3PCh. 8 - Prob. 8.6.4PCh. 8 - Prob. 8.7.1PCh. 8 - Prob. 8.7.2PCh. 8 - Prob. 8.7.3PCh. 8 - Prob. 8.8.1PCh. 8 - Prob. 8.8.2PCh. 8 - Prob. 8.8.3PCh. 8 - Prob. 8.8.4P
Knowledge Booster
Similar questions
- The beam under the Live and Dead loads is shown below. The steel class is $235. Lig L1 L2 a.) Evaluate the slenderness of the web and flange. b.) Calculate the Cb value based on the loads. c.) Calculate the bending moment capacity of the beam... d.) Is the beam cross-section enough for the given loads. L3arrow_forwardThe beam shown is simply supported and has lateral support only at its ends. The only service dead load is the weight of the beam. Determine whether it is satisfactory for the load shown. A992 steel (E= 345 MPa and F= 450 MPa) is used, and the 30 KN/m is a service live load. Use LRFD 30 KN/m WiL = 30 KN/m W16x 40 -Centroid W16 x 40 3marrow_forwardA simply supported beam is subjected to a uniform service dead load of 15kN/m(including the weight of the beam), a uniform service live load of 30kN/m. the beam is 12 meters long and is laterally supported at the midspan, and A572 Gr.50 steel is used. Is W30x108 adequate? Assume Cb=1 by 4 d fore k h h Z S Ly 267 TH mm 19.3 757 13.8 min m 35.8 685.4 54.6 737.7 5670 x10^3 4900 x103 mm 60.8 x10 6 mm 2080 x10 3 8300 x10^9 mm wwwarrow_forward
- For the following designs, use A36 steel for the angles and A992 steel for the beam and column. Use LRFD. a. Design a simply supported beam for the conditions shown in Figure P8.39. In addition to its own weight, the beam must support a service live load of 4 kipsyfoot. Assume continuous lateral support of the compression flange. Deflection is not a design consideration. b. Design an allbolted, doubleangle connection. Do not consider eccentricity. Use bearingtype bolts. c. Consider eccentricity and check the connection designed in part b. Revise the design if necessary. d. Prepare a detailed sketch of your recommended connection.arrow_forwardA built up compression section is shown in the figure. This forms a non-standard wide flange section. Assume KL - 2.4 m. Use A36 steel with Fy-248 MPa. Use NSCP Specifications. E-200 GPa a) Compute the reduction factor Qs, for unstiffened elements. 276mm STEEL DESIGN - CIVIL ENGINEERING 250mm 12mm 6mmarrow_forwardThe light rigid bar ABCD shown is pinned at C and connected to two vertical rods. The bar was initially horizontal, and the rods were stress-free before the load P = 20 KN is applied. Steel E200 Gra A-600mm L-I m 2.0 m 0.6m 1.5 m D. V P-20 KN Aluminum E-70 GPa A-900mm L-1.5 m What is the axial load at aluminum rod in KN?arrow_forward
- If the beam in Problem 5.5-9 i5 braced at A, B, and C, compute for the unbr Cb aced length AC (same as Cb for unbraced length CB). Do not include the beam weight in the loading. a. Use the unfactored service loads. b. Use factored loads.arrow_forwardA plate girder must be designed for the conditions shown in Figure P10.7-4. The given loads are factored, and the uniformly distributed load includes a conservative estimate of the girder weight. Lateral support is provided at the ands and at the load points. Use LRFD for that following: a. Select the, flange and web dimensions so that intermediate stiffeners will he required. Use Fy=50 ksi and a total depth of 50 inches. Bearing stiffeners will be used at the ends and at the load points, but do not proportion them. b. Determine the locations of the intermediate stiffeners, but do not proportion them.arrow_forwardA beam must be designed to the following specifications: Span length = 35 ft Beam spacing = 10 ft 2-in. deck with 3 in. of lightweight concrete fill (wc=115 pcf) for a total depth of t=5 in. Total weight of deck and slab = 51 psf Construction load = 20 psf Partition load = 20 psf Miscellaneous dead load = 10 psf Live load = 80 psf Fy=50 ksi, fc=4 ksi Assume continuous lateral support and use LRFD. a. Design a noncomposite beam. Compute the total deflection (there is no limit to be checked). b. Design a composite beam and specify the size and number of stud anchors required. Assume one stud at each beam location. Compute the maximum total deflection as follows: 1. Use the transformed section. 2. Use the lower-bound moment of inertia.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning