Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 8.7.2P
To determine
(a)
If column stiffeners are required or not based on load resistance and factor design.
To determine
(b)
If column stiffeners are required or not based on Allowed Stress Design.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Please solve correctly
9-5
A -in-thick steel bar, to be used as a beam, is welded to a vertical support by two fillet welds as
illustrated.
(a) Find the safe bending force F if the permissible shear stress in the welds is 20 kpsi.
(b) In part a you found a simple expression for F in terms of the allowable shear stress. Find the
allowable load if the electrode is E7010, the bar is hot-rolled 1020, and the support is hot-
rolled 1015.
F
16 in
Problem 9-5
2 in
2 in
-6 in
Two plates each with thickness t = 16 mm are bolted together with 6– 22 mm diameter bolts forming
a lap connection. Bolt spacing are as follows: S1 = 40 mm, S2 = 80 mm, S3 = 100 mm. Bolt hole
diameter = 25 mm. Using A36 steel having Fy = 248 MPa and Fu = 400 MPa.
P
►P
S.
S
S2
S2
DETERMINE:
1. Determine the ultimate load Pu that the connection can carry based on tensile rupture of
effective net area using LRFD.
2. If P = 200 kN, determine the maximum live load that the connection could carry based on
tensile rupture using LRFD.
P.
Chapter 8 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Ch. 8 - Prob. 8.2.1PCh. 8 - Prob. 8.2.2PCh. 8 - A plate is used as a bracket and is attached to a...Ch. 8 - Prob. 8.2.4PCh. 8 - Prob. 8.2.5PCh. 8 - Prob. 8.2.6PCh. 8 - Prob. 8.2.7PCh. 8 - Prob. 8.2.8PCh. 8 - Prob. 8.2.9PCh. 8 - Prob. 8.2.10P
Ch. 8 - Prob. 8.2.11PCh. 8 - Prob. 8.2.12PCh. 8 - Prob. 8.2.13PCh. 8 - Prob. 8.3.1PCh. 8 - Prob. 8.3.2PCh. 8 - Prob. 8.3.3PCh. 8 - Prob. 8.3.4PCh. 8 - Prob. 8.3.5PCh. 8 - Prob. 8.3.6PCh. 8 - Prob. 8.3.7PCh. 8 - Prob. 8.3.8PCh. 8 - Prob. 8.3.9PCh. 8 - Prob. 8.3.10PCh. 8 - Use an elastic analysis and determine the maximum...Ch. 8 - Use an elastic analysis and determine the maximum...Ch. 8 - Use an elastic analysis and determine the maximum...Ch. 8 - Prob. 8.4.4PCh. 8 - Prob. 8.4.5PCh. 8 - Prob. 8.4.6PCh. 8 - Use an elastic analysis and compute the extra load...Ch. 8 - Use an elastic analysis and compute the extra load...Ch. 8 - Prob. 8.4.9PCh. 8 - Prob. 8.4.10PCh. 8 - Prob. 8.4.11PCh. 8 - Prob. 8.4.12PCh. 8 - Prob. 8.4.13PCh. 8 - Prob. 8.4.14PCh. 8 - Prob. 8.4.15PCh. 8 - Prob. 8.4.16PCh. 8 - Prob. 8.4.17PCh. 8 - Prob. 8.4.18PCh. 8 - a. Use LRFD and design a welded connection for the...Ch. 8 - Prob. 8.4.20PCh. 8 - Prob. 8.5.1PCh. 8 - Prob. 8.5.2PCh. 8 - Prob. 8.5.3PCh. 8 - Prob. 8.5.4PCh. 8 - Prob. 8.5.5PCh. 8 - Prob. 8.6.1PCh. 8 - Prob. 8.6.2PCh. 8 - Prob. 8.6.3PCh. 8 - Prob. 8.6.4PCh. 8 - Prob. 8.7.1PCh. 8 - Prob. 8.7.2PCh. 8 - Prob. 8.7.3PCh. 8 - Prob. 8.8.1PCh. 8 - Prob. 8.8.2PCh. 8 - Prob. 8.8.3PCh. 8 - Prob. 8.8.4P
Knowledge Booster
Similar questions
- Tension Member Design Problem 1. A channel shape is under 50 kips dead and 100 kips live tensile axial load as shown in the figure. The member is connected to a gusset plate with 10 inch longitudinal welds. Find the lightest channel shape to carry the loading. Use only vielding and rupture limit states to design. Use 50 ksi steel (Fy=50 ksi, Fu=65 ksi). (a) Assume yielding limit state controls in the design process; (b) After selecting the lightest section, check the rupture limit state. Do not redesing if needed. 1 Pa=50 kips PL=100 kips 10"arrow_forwardAn I-section bracket is connected to the column as shown. The size of weld is 6 mm on web and 10 mm on flange. What will be the safe load (in kN) that can be carried by the connection? Assume NA for whole weld = 110.57 x 106 mm4. Use Fe410 grade steel. 240 mm 170 mm P unu 00t * 280 mm unu 00t 280 mmarrow_forwardA welded bracket connection is shown in figure. It supports a factored load of 150 kN at a distance of 120 mm from the face of column. Design the fillet weld on two sides. Grade of steel = Fe410, f. = 250 MPa. y 120 mm P₁ = 150 kN Fillet weld t = 12 mmarrow_forward
- A structural tee bracket is attached to a column flange with six bolts as shown in Figure . All structural steel is A992. Check this connection for compliance with the AISC Specification. Assume that the bearing strength is controlled by the bearing deformation strength of 2.4dtFu. a. Use LRFD. b. Use ASD.arrow_forwardDesign a welded connection for an MC9x23.9 of A572 Grade 50 steel connected to a 3/8-inch-thick gusset plate (Figure 6). The gusset plate is A36 steel. Show your results on a sketch, complete with dimensions. = 3/8" Figure 6 D = 48 k L = 120 k MC9 x 23.9 a. Use LRFD. b. Use ASD.arrow_forwardQ1:A: The Ix6 in. plate shown in Figure below is connected to a lx10 in. plate with longitudinal fillet welds to transfer a tensile load. Determine the LRFD design tensile strength of the member if F, = 50 ksi and Fu = 65 ksi. PLI X 10 in PL1 x 6 in P P w= 6 in Longitudinal fillet welds L=8 inarrow_forward
- Situation 5. The angular section shown below is welded to a 12 mm gusset plate. Both materials are A36 steel with Fy = 250 MPa. The allowable tensile stress is 0.6Fy. The weld is E80 Electrode and 12 mm thickness. INNOVATIONS Properties of L 150x90x12: y = 50 shear stress of weld = 0.3Fu A = 2750 Allowable REVIEW INNOVATIE a K ➜ www A. 234 KN B. 349 KN b 13. What is the value of P without exceeding the allowable tensile the angle? C. 382 kN p. 413 kN 14. Find required length of the weld based on shear? A. 280 mm C. 300 mm D. 380 mm B. 320 mm 15. Find the required value of a? A. 108 mm B. 97.9 mm D. 185 mm NEW INNOVATIONS REVIEW INNOVATIOf REVIEW NEW INNOVATIONSarrow_forwardIf you don't know the solution please leave it but don't copy from other websites solutionarrow_forward4-47. The support consists of a solid red brass C83400 copper post surrounded by a 304 stainless steel tube. Before the load is applied the gap between these two parts is 1 mm. Given the dimensions shown, determine the greatest axial load that can be applied to the rigid cap A without causing yielding of any one of the materials. mm 0.25 m SOLUTION 60 mm -10 mmarrow_forward
- A PL 38 x 6 tension member is welded to a gusset plate as shown in figure. The steel is A36. PL ½ x 6 The design strength based on yielding is nearest to: The design strength based on rupture is nearest to: The design strength for LRFD is nearest to: The allowable strength based on yielding is nearest to: The allowable strenath based on rupture is nearest to: The allowable strength for ASD.arrow_forwardIf there is an external force applied to a connection, you can combine the pin connection to one member to simplify the diagrams. What member is this and why? a. 2-force member, so you can eliminate the member force b. 2-force member, so you can skip drawing the FBD of the 2-force member c. multi-force member, so you can make use of the known direction of the two-force member internal force d. multi-force member, so you can eliminate the force applied by the 2-force memberarrow_forward4 A flanged bolt coupling has ten 12-mm di ameter steel bolts on 500 mm diameter b olt circle and six 16 mm diameter aluminu m bolts on 300 mm diameter bolt circle. T he maximum shear stresses of the materi als are 60 MPa in steel and 40 MPa in al uminum. Use G = 80 GPa for steel and 3 0 GPa for aluminum. What is the maximu m required shear strength of each alumin um bolt to determine the maximum torqu e that can be applied to the system? Dra wing not included in this problem.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning