Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 8.4.8P
Use an elastic analysis and compute the extra load in the weld (in kips per inch of length) caused by the eccentricity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the size of the weld using E60 electrode. Dead Load = 38 kip and LL = 95 kips (Service Loads)
10 in-
10 in-
-10 in
W = ?
A 4 x 4 x ½ - in. angle of A36 steel is to be welded to a plate with E70XX electrodes to develop the full tensile strength of the angle. Using 3/8-in. fillet welds, compute the design lengths for the welds on the two sides of angle, assuming development of tension on the full cross section of the angles.
GIVEN:
A = 3.75 in2
L1 = 10.94”
L2 = 5.09”
IF only connected leg, L = 7.7”; 4.75 each side
Please answer the problem attached image.(using Nscp 2015) thank you
Chapter 8 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Ch. 8 - Prob. 8.2.1PCh. 8 - Prob. 8.2.2PCh. 8 - A plate is used as a bracket and is attached to a...Ch. 8 - Prob. 8.2.4PCh. 8 - Prob. 8.2.5PCh. 8 - Prob. 8.2.6PCh. 8 - Prob. 8.2.7PCh. 8 - Prob. 8.2.8PCh. 8 - Prob. 8.2.9PCh. 8 - Prob. 8.2.10P
Ch. 8 - Prob. 8.2.11PCh. 8 - Prob. 8.2.12PCh. 8 - Prob. 8.2.13PCh. 8 - Prob. 8.3.1PCh. 8 - Prob. 8.3.2PCh. 8 - Prob. 8.3.3PCh. 8 - Prob. 8.3.4PCh. 8 - Prob. 8.3.5PCh. 8 - Prob. 8.3.6PCh. 8 - Prob. 8.3.7PCh. 8 - Prob. 8.3.8PCh. 8 - Prob. 8.3.9PCh. 8 - Prob. 8.3.10PCh. 8 - Use an elastic analysis and determine the maximum...Ch. 8 - Use an elastic analysis and determine the maximum...Ch. 8 - Use an elastic analysis and determine the maximum...Ch. 8 - Prob. 8.4.4PCh. 8 - Prob. 8.4.5PCh. 8 - Prob. 8.4.6PCh. 8 - Use an elastic analysis and compute the extra load...Ch. 8 - Use an elastic analysis and compute the extra load...Ch. 8 - Prob. 8.4.9PCh. 8 - Prob. 8.4.10PCh. 8 - Prob. 8.4.11PCh. 8 - Prob. 8.4.12PCh. 8 - Prob. 8.4.13PCh. 8 - Prob. 8.4.14PCh. 8 - Prob. 8.4.15PCh. 8 - Prob. 8.4.16PCh. 8 - Prob. 8.4.17PCh. 8 - Prob. 8.4.18PCh. 8 - a. Use LRFD and design a welded connection for the...Ch. 8 - Prob. 8.4.20PCh. 8 - Prob. 8.5.1PCh. 8 - Prob. 8.5.2PCh. 8 - Prob. 8.5.3PCh. 8 - Prob. 8.5.4PCh. 8 - Prob. 8.5.5PCh. 8 - Prob. 8.6.1PCh. 8 - Prob. 8.6.2PCh. 8 - Prob. 8.6.3PCh. 8 - Prob. 8.6.4PCh. 8 - Prob. 8.7.1PCh. 8 - Prob. 8.7.2PCh. 8 - Prob. 8.7.3PCh. 8 - Prob. 8.8.1PCh. 8 - Prob. 8.8.2PCh. 8 - Prob. 8.8.3PCh. 8 - Prob. 8.8.4P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Use an elastic analysis and determine the maximum load per inch of weld.arrow_forwardDetermine the lengths of the side fillet welds required at the heel and toe of the angle shown. Allowable shearing stress through the throat of each weld is 124 MPa. L 150 x 150 x 13 L1 P1 108 T= 250 kN 42 13 150 mm P2+ L2 gusset plate 150arrow_forwardCompute the size of fillet weld for a bracket connection with ISMB 300 column as shown in figure. Permissible shear stress in weld = 110 MPa. %3D 425 mm 100 kN 300 Single 12 mm plate 250 mmarrow_forward
- A welded bracket connection is shown in figure. It supports a factored load of 150 kN at a distance of 120 mm from the face of column. Design the fillet weld on two sides. Grade of steel = Fe410, f. = 250 MPa. y 120 mm P₁ = 150 kN Fillet weld t = 12 mmarrow_forwardA tension plate shown below is used to support suspended load "T". Gusset Plate Fy Fu = 400 MPa = 248 MPa 200 mm a) Determine the allowable tensile capacity of the plate if L = 240 mm. (Assume weld strength is satisfactory).arrow_forwardA 100 x 100 x 10 mm angle is to be welded to a gusset plate. The angle carries a load of 200 kN applied along its centroidal axis which is 28.7 mm above the short leg as shown in the figure. Use an 8 mm fillet weld with a minimum tensile strength Fu = 483.33 MPa. Determine the length of a transverse fillet weld along the edge of the angle in order to avoid eccentricity of loading. Determine the length of side fillet weld required at the heel. Determine the length of side fillet weld required at the toe.arrow_forward
- Please solve correctlyarrow_forwardDesign a double angle tension member that is fillet welded to a gusset plate. Assume that the angles will be made from A36 steel, and the gusset plate from A572 Gr. 50 steel. Use 70ksi electrode. Design the system to resist a factored load of 200 kips. Check all applicable limit states that are possible. Provide your results on a sketch with standard weld symbols and details.arrow_forwardCalculate the maximum shear force in the welds in the given figure. P=160kN X = 150mm y= 125mm z=70mm 4 Y Narrow_forward
- A tension plate shown below is used to support suspended load "T". Gusset Plate- F, = 248 MPa Fu = 400 MPa %3D 200 mm a) Determine the allowable tensile capacity of the plate if L= 240 mm. (Assume weld strength is satisfactory).arrow_forwardCalculate strength of single V butt joint to join 2 plates 300 x 16 mm with f = 250 MPa. Assume weld to be fabricated on field. (for single 5 V-butt weld, throat thickness .xtmin). 8 =arrow_forwardA channel C250x37 mm section is welded to a 9 mm gusset plate. Welding is not permitted on the back of the channel. All steel is A36 with Fy=250 MPa and Fu=400 MPa. Use E70electrodes having and Fu=485 MPa (SMAW) process. The maximum length of lap is 250mm. The size of fillet weld is 8mm. Assume the width of slot weld is 22 mm. Size of slot weld is 13mm Properties of C250x37 A = 4750 mm2 tw = 13.0 mm2 d = 254 mm a. Determine the force resisted by the slot weld in kN, when the full tensile capacity is 712.5 KN (from the gross yielding capacity using ASD) Hint: Full tensile Capacity = Force Resisted by Fillet and Slot Weld Round your answer to 3 decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY