(a)
The required diameter of group
Answer to Problem 8.2.7P
The required diameter of the bolt by elastic analysis using LRFD is
Explanation of Solution
Given data:
The live load is
The dead load is
Concept Used:
Write the equation of nominal bolt area.
Here, the diameter of bolt is
Calculation:
Write the equation to calculate the factored load for LRFD.
Here, the dead load is
Substitute
Determine the centroid with respect to the lower left bolt.
Write the equation to calculate the distance of centroid in
Here, the number of bolts is
Substitute the values in Equation (III).
Write the equation to calculate the distance of the centroid in
Substitute the values in Equation (IV).
Write the expression to calculate the load applied in the
Here, the total load is
Substitute
Write the expression to calculate the load applied in the
Here, the and load component in
Substitute
Write the equation to calculate the horizontal direct shear component.
Here, the load in
Substitute
Write the equation to calculate the vertical direct shear component.
Here, the load in
Substitute
Calculate the horizontal and vertical components of loads due to eccentricity.
Calculate the distance of the load from centroid of connection.
Here, the eccentricity in
Write the expression for the moment for
Here, moment generated is
Substitute
Write the expression for the moment for
Here, moment generated is
Substitute
Write the expression for the moment for
Here, the total moment generated is
Substitute
Write the equation to calculate the total fastener force.
Here, the total fastener force is
Write the equation to calculate the
Here, the horizontal direct shear component is
Write the equation to calculate the
Here, the vertical direct shear component is
The top right bolt is critical, thus check for its safety.
Calculate the distance of the bolt from the centroid.
Here, the distance of the top right bolt from the centroid in the x and y directions are
Write the equation to calculate the load coming on the critical bolt in x direction due to eccentricity.
Substitute
Write the equation to calculate the load coming on critical bolt in y direction due to eccentricity.
Substitute
Calculate the
Substitute
Calculate the
Substitute
Calculate the total fastener force.
Substitute
Check the safety for the bottom right bolt.
Calculate the distance of the bolt from the centroid.
Calculate the load coming on the critical bolt in x direction due to eccentricity.
Substitute
Calculate the load coming on critical bolt in y direction due to eccentricity.
Substitute
Calculate the
Substitute
Calculate the
Substitute
Calculate the total fastener force.
Substitute
Therefore, the total shear force in the fastener is
Write the equation to calculate the nominal shear capacity of bolt.
Here, the nominal shear capacity is
Substitute
Calculate the diameter of bolt.
Substitute
Therefore, adopt the bolt diameter of
Check for safety:
Write the equation to calculate the bearing deformation strength of the bolt.
Here, the bearing deformation strength is
Assume A36 steel and the value of
Assume the thickness of the plate is
Calculate the bearing deformation strength of bolt.
Substitute
Write the equation to calculate the tear-out strength of inner bolt.
Here, the tear-out strength of inner bolt is
Write the equation to calculate the clear distance for edge bolt.
Here, the bolt edge distance is
Write the equation to calculate the hole diameter.
Calculate the clear distance for edge bolt.
Substitute
Calculate the tear-out strength of inner bolt.
Substitute
Write the equation to calculate the tear-out strength of edge bolt.
Here, the tear-out strength of edge bolt is
Write the equation to calculate the clear distance for edge bolt.
Here, the spacing between bolts is
Substitute
Calculate the tear-out strength of edge bolt.
Substitute
The minimum of Equations (XXII), (XIX) and (XVIII) is the value of
Calculate the design of strength of bolt by substituting
The strength is greater than the design strength.
Therefore, adopt
Conclusion:
Thus, the size of bolt is
(b)
The size of bolt by elastic analysis using ASD.
Answer to Problem 8.2.7P
The size of bolt by elastic analysis using ASD is
Explanation of Solution
Calculation:
Write the equation to calculate the factored load.
Here, the dead load is
Substitute
Write the expression to calculate the load applied in
Here, the total load is
Substitute
Write the expression to calculate the load applied in
Here, the and load component in
Substitute
Calculate the horizontal direct shear component.
Substitute
Calculate the vertical direct shear component.
Substitute
Write the expression for the moment for
Here, moment generated is
Substitute
Write the expression for the moment for
Here, moment generated is
Substitute
Write the expression for the moment for
Here, the total moment generated is
Substitute
Check the safety for the bottom right bolt.
Calculate the distance of the bolt from the centroid.
Calculate the load coming on the critical bolt in x direction due to eccentricity.
Substitute
Calculate the load coming on critical bolt in y direction due to eccentricity.
Substitute
Calculate the
Substitute
Calculate the
Substitute
Calculate the total fastener force.
Substitute
Write the equation to calculate the nominal shear capacity of bolt.
Here, the nominal shear capacity is
Substitute
Calculate the diameter of bolt.
Substitute
Therefore, adopt the bolt diameter of
Check for safety:
Calculate the bearing deformation strength of bolt.
Substitute
Calculate the hole diameter.
Calculate the clear distance for edge bolt.
Substitute
Calculate the tear-out strength of inner bolt.
Substitute
Calculate the clear distance for edge bolt.
Substitute
Calculate the tear-out strength of edge bolt.
Substitute
The minimum of Equations (XXII), (XIX) and (XVIII) is the value of
Calculate the allowable strength of bolt by substituting
The strength is greater than the design strength.
Therefore, adopt
Conclusion:
Thus, the size of bolt is
Want to see more full solutions like this?
Chapter 8 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
- Note: Provide a clear, step-by-step, simplified handwritten solution (no explanations), ensuring it is completed without any AI involvement. The solution must demonstrate expert-level accuracy and will be evaluated for its quality and precision. Please refer to the provided image for additional clarity. Double-check all calculations for correctness before submission. Thank you!. Question 1: (refer to the image for visual understanding) For the soil element shown on the right: a) Draw the Mohr’s circle for this case b) Find the major and minor principal stresses c) Find the normal and shear stresses on plane AB. Question 2: (refer to the image) A soil sample in a triaxial test with a cell pressure of 100 kPa fails when the vertical stress reaches 400 kPa. The resulting failureplane is observed to dip 60 degrees from horizontal (see figure). Assume that the soil is drained during the test, i.e. there is no pore pressure. a) Determine the friction angle of the soil. Hint: draw the…arrow_forwardPlease solve all pointsarrow_forward1: find out the optimal solution: 1- Reliability Function 2- Serial Configuration 3- M.T.T.F 4- Probability distribution function (P.D.F) 5- Failure rate function :calculate the reliability of the system for the following Figure 0.90 0.80 0.95 0.80 0.80 0.94) 0.80 : A system containing four connected compounds in series, each one has a distribution and its parameters as shown in the table below Component Scale parameter Shape parameter 1 100 1.20 2 150 0.87 3 510 - 1.80 4 720 1.00arrow_forward
- Time: 1. Hrs During the last ten days: In one of the productive operations, the electronic control calculator equipped with No. of defects for a specific volume of samples as shown: 10 9 8 7 6 5 4 3 2 1 Day No. 6673 6976 7505 6991 7028 6960 7916 7010 6591 7350 Total No. 53 55 60 58 16 22 49 48 64 17 Defect No. DRAW THAT & CHOOSE THE BEST A-P chart. B-C chart 1. Key functions of quality control include: A) Control of design, materials received and products and conduct studies of operations B-Design and develop reasonable specifications C) The use of equipment that gives the required accuracy D) Provide appropriate screening equipment 2. The basic principles of critical pathways are: A-fragmentation of the system to the objectives of the secondary clear and specific B-Drawing the network diagram C-Finding the critical path D- All of the above 3- The production system is the following: A-An integral part of the plant's completion B-An effective system to integrate the efforts of various…arrow_forwardPlease solve all pointsarrow_forwardPlease solve all pointsarrow_forward
- Please solve the question by hand with a detailed explanation of the steps.arrow_forward) We started a new production process and its study gave the total deviations The standard value (for 25 samples of the product, sample size 4) is .105 .Calculate the capacity of this process The product specification limits are: 6.30 = LSL 6.50 = USL Standard deviation in a manufacturing system is 0.038 = We made improvements to the system and the deviation has become Standard 0.030 = σ What is required is to calculate the estimated coefficient before and after the operation Optimization. What is your conclusion? : A find out the optimal solution: 1-Average Outgoing Quality AOQ 2- operating Characteristics Curve 100% Inspection 3-Acceptable Quality level 4- Average outgoing Quality AOQ 5- Capability Index CPKarrow_forwardFollowing are the data of gauge and discharge collected at a particular section of the river by stream gauging operation. Gauge reading Discharge Gauge reading Discharge (m) (cms) (m) (cms) 7.65 15 8.48 170 7.70 30 8.98 400 7.77 57 9.30 600 7.80 39 9.50 800 7.90 60 89 10.50 1500 7.91 100 11.10 2000 8.08 150 11.70 2400 1. Develop a rating curve for this stream at this section for use in estimating the discharge for a known gauge reading and fit a linear regression equation for use in estimation of stage for a known value of discharge. Use a value of 7.50 as the gauge reading corresponding to zero discharge. (20 pts) Equation 1 arith 2. What is the coefficient of correlation of the derived relationship? (10 pts) R2² arith Equation 2 log R2 log 3. Determine the stage for a discharge of 3500 cms (5 pts) 4. Determine the discharge for a stage of 15 m (5 pts) NB Do both arithmetic and logarithmic plotsarrow_forward
- Q2/ A (2m x 4 m) rectangular flexible foundation is placed above the ground surface (G.S) for two layers of clay, each layer 10 m thick. The modulus of Elasticity (E.) of the upper layer is 13 MN/m² and that of the lower layer is 15 MN/m². The Poisson ratio is (u, = 0.6) for the two layers. The pressure (stress) of 100 kN/m²is distributed along the surface of foundation. Determine the rigid immediate settlement at the corner of the foundation using Elastic theory method?arrow_forwardQ1/ Find the maximum allowable load for a square foundation (3 m x 3 m) placed vertically in cohesive soil? (Use Terzaghi equation) Note: Yt=Yeat=18 kN/m³ Depth of foundation = 1.5 m Depth of water table below the ground surface = 0.8 m Factor of safety 3 C=20 Yw = 10 kN/m³ = No vertical or inclined loadsarrow_forwardP.3.3 Oil of sp.gr. 0.9 flows through a vertical pipe (upwards). Two points A and B one above the other 40 cm apart in a pipe are connected by a U-tube carrying mercury. If the difference of pressure between A and B is 0.2 kg/cm², 1- Find the reading of the manometer. 2- If the oil flows through a horizontal pipe, find the reading in manometer for the same difference in pressure between A and B. Ans. 1- R= 0.12913 m, 2- R = 0.1575 m,arrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning