(a)
Interpretation:
The bond order of
Concept introduction:
Molecular orbital theory is a method that shows that how atomic orbitals combine with other or with each other to form bonding and antibonding orbitals. It is used to determine the molecular structure of a molecule.
(b)
Interpretation:
Whether an electron should be added or remove to increase the bond order of
Concept introduction:
Molecular orbital theory is a method that shows that how atomic orbitals combine with other or with each other to form bonding and antibonding orbitals. It is used to determine the molecular structure of a molecule.
(c)
Interpretation:
The charge and bond order of new species made in part (b) should be predicted.
Concept introduction:
Molecular orbital theory is a method that shows that how atomic orbitals combine with other or with each other to form bonding and antibonding orbitals. It is used to determine the molecular structure of a molecule.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
LCPO CHEMISTRY W/MODIFIED MASTERING
- Butadiene, C4H6, is a planar molecule that has the followingcarbon–carbon bond lengths: (a) Predict the bond angles around each of the carbon atoms and sketch the molecule. (b) From left to right, what is the hybridization of each carbon atom in butadiene? (c) The middle C—C bond length in butadiene (1.48 Å) is a little shorter than the average C—C single bond length (1.54 Å). Does this imply that the middle C—C bond in butadiene is weaker or stronger than the average C—C single bond? (d) Based on your answer for part (c), discuss what additional aspects of bonding in butadiene might support the shorter middle C—C bond.arrow_forwardNitrogen trifluoride (NF3) is used in the electronics industry to clean surfaces. NF3 is also a potent greenhouse gas. (A) Draw the Lewis structure of NF3 and determine its molecular geometry. (B) BF3 and NF3 both have three covalently bonded fluorine atoms around a central atom. Do they have the same dipole moment? (C) Could BF3 also behave as a greenhouse gas? Explain why or why not.arrow_forwardA useful solvent that will dissolve salts as well as organic compounds is the compound acetonitrile, H3CCN. It is present in paint strippers.(a) Write the Lewis structure for acetonitrile, and indicate the direction of the dipole moment in the molecule.(b) Identify the hybrid orbitals used by the carbon atoms in the molecule to form σ bonds.(c) Describe the atomic orbitals that form the π bonds in the molecule. Note that it is not necessary to hybridize the nitrogen atom.arrow_forward
- 7. Nitrogen is the central atom in each of the species given. (a) Draw the Lewis electron-dot structure for each of the species. + NO₂ NO₂ NO₂ (b) List the species in order of increasing bond angle. Justify your answer. (c) For NO₂ and NO₂, give the hybridization of the nitrogen atom in it. (d) Identify the only one of the species that dimerizes and explain what causes it to do so.arrow_forward(a) What is the hybridization of chlorine in Clo4 ? (Type your answer using the format sp3 for sp3.) (b) What is the hybridization of bromine in BrF5? (c) What is the hybridization of bromine in BrO2 ?arrow_forwardThe molecular orbitals depicted below are derived from 2p atomic orbitals in F₂⁺. (a) Give the orbital designations. (b) Which is occupied by at least one electron in F₂⁺? (c) Which is occupied by only one electron in F₂⁺?arrow_forward
- 2(a) Provide the Lewis structures for both CH3OH and C2H3Cl. 2(b) What is the largest bond angle among all the bond angles in CH3OH and C2H3Cl? Listthe three atoms making this largest bond angle, and estimate the value of the angle.2(c) What intermolecular forces are present(i) between CH3OH molecules?(ii) between C2H3Cl molecules?arrow_forwardDraw the molecular orbital energy diagrams for the valence electrons in the following diatomic molecules. Calculate the bond order and indicate if each of them is diamagnetic or paramagnetic. (а) В> (b) С. (c) CO (d) NO (е) Оzarrow_forwardIf an electron is removed from a fluorine molecule, an F+2molecular ion forms.(a) Give the molecular electron configurations for F2 and F+2 (for the MOs constructed from valence AOs).(b) Give the bond order of each species.(c) Predict which species should be paramagnetic.(d) Predict which species has the greater bond dissociation energy.arrow_forward
- For each of the following molecule: (i) draw the correct Lewis structure; (ii) determine the molecular geometry and the type of hybridization on the central atom, and (iii) predict whether the molecule is polar or nonpolar. (a) BrCl5arrow_forwardPropylene, C3H6, is a gas that is used to form the importantpolymer called polypropylene. Its Lewis structure is given. (a) What is the total number of valence electrons in the propylenemolecule? (b) How many valence electrons are usedto make σ bonds in the molecule? (c) How many valenceelectrons are used to make π bonds in the molecule? (d) Howmany valence electrons remain in nonbonding pairs in themolecule? (e) What is the hybridization at each carbon atomin the molecule?arrow_forward(a) Write a single Lewis structure for SO3 , and determine the hybridization at the S atom. (b) Are there other equivalent Lewis structures for the molecule? (c) Would you expect SO3 to exhibit delocalized π bonding?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning