Problems 79 and 80 require the following discussion: When granular materials are allowed to fall freely, they form conical (cone-shaped) piles. The naturally occurring angle of slope, measured from the horizontal, at which the loose material comes to rest is called the angle of repose and varies for different materials. The angle of repose is related to the height and base radius of the conical pile by the equation . See the illustration.
Angle of Repose: Deicing Salt Due to potential transportation issues (for example, frozen waterways) deicing salt used by highway departments in the Midwest must be ordered early and stored for future use.
When deicing salt is stored in a pile 14 feet high, the diameter of the base of the pile is 45 feet.
(a) Find the angle of repose for deicing salt.
(b) What is the base diameter of a pile that is 17 feet high?
(c) What is the height of a pile that has a base diameter of approximately 122 feet?
Source: The Salt Storage Handbook, 2013
To find:
A. The angle of repose for deicing salt.
Answer to Problem 79AYU
Solution:
A. The angle of repose for the deicing salt .
Explanation of Solution
Given:
Height of the piled deicing salt .
Diameter of the base of the piled deicing salt .
Radius of the base of the piled deicing salt .
Formula used:
The angle of repose .
Calculation:
To find , we need to find , because has the same range as except where undefined.
The angle of repose .
Here, .
Equation of the circle .
Where .
Both and are positive, therefore lies in the I quadrant.
Using the formula,
The angle of repose for the deicing salt .
To find:
B. The base diameter of the conical pile.
Answer to Problem 79AYU
Solution:
B. Diameter of the conical pile .
Explanation of Solution
Given:
The height of the conical pile .
From 79 (a).
Formula used:
The angle of repose .
Calculation:
Using the formula,
radius of the conical pile .
Diameter of the conical pile .
To find:
C. The height of conical pile of deicing salt.
Answer to Problem 79AYU
Solution:
C. Height of conical .
Explanation of Solution
Given:
The base diameter of conical pile .
Radius of the conical pile .
From 79 (a),
Formula used:
Calculation:
Using the formula,
Height of conical pile .
Chapter 7 Solutions
Precalculus
Additional Math Textbook Solutions
Algebra and Trigonometry (6th Edition)
Thinking Mathematically (6th Edition)
University Calculus: Early Transcendentals (4th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Introductory Statistics
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- 4. Use method of separation of variable to solve the following wave equation მłu J²u subject to u(0,t) =0, for t> 0, u(л,t) = 0, for t> 0, = t> 0, at² ax²' u(x, 0) = 0, 0.01 x, ut(x, 0) = Π 0.01 (π-x), 0arrow_forwardSolve the following heat equation by method of separation variables: ди = at subject to u(0,t) =0, for -16024 ძx2 • t>0, 0 0, ux (4,t) = 0, for t> 0, u(x, 0) = (x-3, \-1, 0 < x ≤2 2≤ x ≤ 4.arrow_forwardex 5. important aspects. Graph f(x)=lnx. Be sure to make your graph big enough to easily read (use the space given.) Label all 6 33arrow_forwardDecide whether each limit exists. If a limit exists, estimate its value. 11. (a) lim f(x) x-3 f(x) ↑ 4 3- 2+ (b) lim f(x) x―0 -2 0 X 1234arrow_forwardDetermine whether the lines L₁ (t) = (-2,3, −1)t + (0,2,-3) and L2 p(s) = (2, −3, 1)s + (-10, 17, -8) intersect. If they do, find the point of intersection.arrow_forwardConvert the line given by the parametric equations y(t) Enter the symmetric equations in alphabetic order. (x(t) = -4+6t = 3-t (z(t) = 5-7t to symmetric equations.arrow_forwardFind the point at which the line (t) = (4, -5,-4)+t(-2, -1,5) intersects the xy plane.arrow_forwardFind the distance from the point (-9, -3, 0) to the line ä(t) = (−4, 1, −1)t + (0, 1, −3) .arrow_forward1 Find a vector parallel to the line defined by the parametric equations (x(t) = -2t y(t) == 1- 9t z(t) = -1-t Additionally, find a point on the line.arrow_forwardFind the (perpendicular) distance from the line given by the parametric equations (x(t) = 5+9t y(t) = 7t = 2-9t z(t) to the point (-1, 1, −3).arrow_forwardLet ä(t) = (3,-2,-5)t + (7,−1, 2) and (u) = (5,0, 3)u + (−3,−9,3). Find the acute angle (in degrees) between the lines:arrow_forwardA tank initially contains 50 gal of pure water. Brine containing 3 lb of salt per gallon enters the tank at 2 gal/min, and the (perfectly mixed) solution leaves the tank at 3 gal/min. Thus, the tank is empty after exactly 50 min. (a) Find the amount of salt in the tank after t minutes. (b) What is the maximum amount of salt ever in the tank?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning