In Problems 79-84, use the following discussion. The formula can be used to approximate the number of hours of daylight D when the declination of the Sun is at a location north latitude for any date between the vernal equinox and autumnal equinox. The declination of the Sun is defined as the angle i between the equatorial plane and any ray of light from the Sun. The latitude of a location is the angle between the Equator and the location on the surface of Earth, with the vertex of the angle located at the center of Earth. See the figure. To use the formula, must be expressed in radians.
that is north latitude for the following dates:
(a) Summer solstice
(b) Vernal equinox
(c) July 4
(d) Thanks to the symmetry of the orbital path of Earth around the Sun, the number of hours of daylight on the winter solstice may be found by computing the number of hours of daylight on the summer solstice and subtracting this result from 24 hours. Compute the number of hours of daylight for this location on the winter solstice. What do you conclude about daylight for a location at north latitude?
To calculate: The number of hours of daylight at the location north latitude Approximate the number of hours of daylight at the any location ( north latitude), for the following dates:
a. Summer solstice .
Answer to Problem 74AYU
Solution:
a. hours.
Explanation of Solution
Given:
The declination of the Sun is defined as the angle between the equatorial plane and any ray of light from the Sun. The latitude of a location is the angle between the Equator and the location on the surface of Earth, with the vertex of the angle located at the center of Earth.
a. Summer solstice .
Formula used:
Calculation:
a. Summer solstice north latitude.
Convert degree into radians.
hours.
To calculate: The number of hours of daylight at the location north latitude Approximate the number of hours of daylight at the any location ( north latitude), for the following dates:
b. Vernal equinox .
Answer to Problem 74AYU
Solution:
b. hours.
Explanation of Solution
Given:
The declination of the Sun is defined as the angle between the equatorial plane and any ray of light from the Sun. The latitude of a location is the angle between the Equator and the location on the surface of Earth, with the vertex of the angle located at the center of Earth.
b. Vernal equinox .
Formula used:
Calculation:
b. Vernal equinox ; north latitude.
Convert degree into radians.
hours.
To calculate: The number of hours of daylight at the location north latitude Approximate the number of hours of daylight at the any location ( north latitude), for the following dates:
c. July 4 .
Answer to Problem 74AYU
Solution:
c. hours.
Explanation of Solution
Given:
The declination of the Sun is defined as the angle between the equatorial plane and any ray of light from the Sun. The latitude of a location is the angle between the Equator and the location on the surface of Earth, with the vertex of the angle located at the center of Earth.
c. July 4 .
Formula used:
Calculation:
c. July 4 .
Convert degree into radians.
hours.
To calculate: The number of hours of daylight at the location north latitude Approximate the number of hours of daylight at the any location ( north latitude), for the following dates:
d. The number of hours of daylight throughout the year for a location at the equator.
Answer to Problem 74AYU
Solution:
d. To compute the number of hours of daylight on the winter solstice hours.
Explanation of Solution
Given:
The declination of the Sun is defined as the angle between the equatorial plane and any ray of light from the Sun. The latitude of a location is the angle between the Equator and the location on the surface of Earth, with the vertex of the angle located at the center of Earth.
d. north latitude .
Formula used:
d. The number of hours of daylight on the winter solstice the number of hours of daylight on the summer solstice.
The number of hours of daylight on the winter solstice hours.
Calculation:
The number of hours of daylight on the summer solstice winter solstice and july 4 is almost half the day whereas in vernal equinox is almost full day at any location north latitude.
Chapter 7 Solutions
Precalculus
Additional Math Textbook Solutions
A First Course in Probability (10th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Introductory Statistics
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
Elementary Statistics (13th Edition)
- Ministry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Automobile Department Subject :Engineering Analysis Time: 2 hour Date:27-11-2022 کورس اول تحليلات تعمیر ) 1st month exam / 1st semester (2022-2023)/11/27 Note: Answer all questions,all questions have same degree. Q1/: Find the following for three only. 1- 4s C-1 (+2-3)2 (219) 3.0 (6+1)) (+3+5) (82+28-3),2- ,3- 2-1 4- Q2/:Determine the Laplace transform of the function t sint. Q3/: Find the Laplace transform of 1, 0≤t<2, -2t+1, 2≤t<3, f(t) = 3t, t-1, 3≤t 5, t≥ 5 Q4: Find the Fourier series corresponding to the function 0 -5arrow_forwardMinistry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Subject :Engineering Analysis Time: 80 min Date:11-12-2022 Automobile Department 2nd month exam / 1" semester (2022-2023) Note: Answer all questions,all questions have same degree. کورس اول شعر 3 Q1/: Use a Power series to solve the differential equation: y" - xy = 0 Q2/:Evaluate using Cauchy's residue theorem, sinnz²+cosz² dz, where C is z = 3 (z-1)(z-2) Q3/:Evaluate dz (z²+4)2 Where C is the circle /z-i/-2,using Cauchy's residue theorem. Examiner: Dr. Wisam N. Hassanarrow_forwardMinistry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Subject :Engineering Analysis Time: 80 min Date:11-12-2022 Automobile Department 2nd month exam / 1" semester (2022-2023) Note: Answer all questions,all questions have same degree. کورس اول شعر 3 Q1/: Use a Power series to solve the differential equation: y" - xy = 0 Q2/:Evaluate using Cauchy's residue theorem, sinnz²+cosz² dz, where C is z = 3 (z-1)(z-2) Q3/:Evaluate dz (z²+4)2 Where C is the circle /z-i/-2,using Cauchy's residue theorem. Examiner: Dr. Wisam N. Hassanarrow_forwardWhich degenerate conic is formed when a double cone is sliced through the apex by a plane parallel to the slant edge of the cone?arrow_forward1/ Solve the following: 1 x + X + cos(3X) -75 -1 2 2 (5+1) e 5² + 5 + 1 3 L -1 1 5² (5²+1) 1 5(5-5)arrow_forwardI need expert handwritten solution.to this integralarrow_forwardExample: If ƒ (x + 2π) = ƒ (x), find the Fourier expansion f(x) = eax in the interval [−π,π]arrow_forwardExample: If ƒ (x + 2π) = ƒ (x), find the Fourier expansion f(x) = eax in the interval [−π,π]arrow_forwardPlease can you give detailed steps on how the solutions change from complex form to real form. Thanks.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning