![Precalculus](https://www.bartleby.com/isbn_cover_images/9780321716835/9780321716835_largeCoverImage.gif)
Concept explainers
Movie Theater Screens Suppose that a movie theater has a screen that is 28 feet tall. When you sit down, the bottom of the screen is 6 feet above your eye level. The angle formed by drawing a line from your eye to the bottom of the screen and another line from your eye to the top of the screen is called the viewing angle. In the figure, is the viewing angle. Suppose that you sit feet from the screen. The viewing angle is given by the function .
What is your viewing angle if you sit 10 feet from the screen? 15 feel? 20 feel?
If there are 5 feet between the screen and the first row of seats and there are 3 feet between each row and the row' behind it. which row results in the largest viewing angle?
Using a graphing utility, graph .
What value of results in the largest viewing angle?
![Check Mark](/static/check-mark.png)
To find:
a. What is your viewing angle if you sit 10 feet from the screen? 15 feet? 20 feet?
Answer to Problem 76AYU
a.
Explanation of Solution
Given:
Suppose that a movie theater has a screen that is 28 feet tall. When you sit down, the bottom of the screen is 6 feet above your eye level. The angle formed by drawing a line from your eye to the bottom of the screen and another line from your eye to the top of the screen is called the viewing angle. In the figure, is the viewing angle. Suppose that you sit feet from the screen. The viewing angle is given by the function,
Calculation:
a. What is your viewing angle if you sit 10 feet from the screen?
What is your viewing angle if you sit 15 feet from the screen?
What is your viewing angle if you sit 20 feet from the screen?
![Check Mark](/static/check-mark.png)
To find:
b. If there are 5 feet between the screen and the first row of seats and there are 3 feet between each row and the row behind it, which row results in the largest viewing angle?
Answer to Problem 76AYU
b. Fourth row.
Explanation of Solution
Given:
Suppose that a movie theater has a screen that is 28 feet tall. When you sit down, the bottom of the screen is 6 feet above your eye level. The angle formed by drawing a line from your eye to the bottom of the screen and another line from your eye to the top of the screen is called the viewing angle. In the figure, is the viewing angle. Suppose that you sit feet from the screen. The viewing angle is given by the function,
Calculation:
b. The viewing angle in the first row (5feet),
The viewing angle in the second row (8feet),
The viewing angle in the third row (11feet),
The viewing angle in the fourth row (14feet),
The viewing angle in the fifth row (17feet),
The viewing angle in the sixth row (20 feet),
The largest viewing angle in fourth row.
![Check Mark](/static/check-mark.png)
To find:
c. What value of results in the largest viewing angle?
Answer to Problem 76AYU
c. 14 feet.
Explanation of Solution
Given:
Suppose that a movie theater has a screen that is 28 feet tall. When you sit down, the bottom of the screen is 6 feet above your eye level. The angle formed by drawing a line from your eye to the bottom of the screen and another line from your eye to the top of the screen is called the viewing angle. In the figure, is the viewing angle. Suppose that you sit feet from the screen. The viewing angle is given by the function,
Calculation:
c.
14 feet is in the largest viewing angle.
Chapter 7 Solutions
Precalculus
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Introductory Statistics
Calculus: Early Transcendentals (2nd Edition)
Elementary Statistics: Picturing the World (7th Edition)
University Calculus: Early Transcendentals (4th Edition)
A First Course in Probability (10th Edition)
- 3.1 Limits 1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice. x+3° x+3* x+3 (a) Is 5 (c) Does not exist (b) is 6 (d) is infinitearrow_forward1 pts Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is Question 1 -0.246 0.072 -0.934 0.478 -0.914 -0.855 0.710 0.262 .arrow_forward2. Answer the following questions. (A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity Vx (VF) V(V •F) - V²F (B) [50%] Remark. You are confined to use the differential identities. Let u and v be scalar fields, and F be a vector field given by F = (Vu) x (Vv) (i) Show that F is solenoidal (or incompressible). (ii) Show that G = (uvv – vVu) is a vector potential for F.arrow_forward
- A driver is traveling along a straight road when a buffalo runs into the street. This driver has a reaction time of 0.75 seconds. When the driver sees the buffalo he is traveling at 44 ft/s, his car can decelerate at 2 ft/s^2 when the brakes are applied. What is the stopping distance between when the driver first saw the buffalo, to when the car stops.arrow_forwardTopic 2 Evaluate S x dx, using u-substitution. Then find the integral using 1-x2 trigonometric substitution. Discuss the results! Topic 3 Explain what an elementary anti-derivative is. Then consider the following ex integrals: fed dx x 1 Sdx In x Joseph Liouville proved that the first integral does not have an elementary anti- derivative Use this fact to prove that the second integral does not have an elementary anti-derivative. (hint: use an appropriate u-substitution!)arrow_forward1. Given the vector field F(x, y, z) = -xi, verify the relation 1 V.F(0,0,0) = lim 0+ volume inside Se ff F• Nds SE where SE is the surface enclosing a cube centred at the origin and having edges of length 2€. Then, determine if the origin is sink or source.arrow_forward
- 4 3 2 -5 4-3 -2 -1 1 2 3 4 5 12 23 -4 The function graphed above is: Increasing on the interval(s) Decreasing on the interval(s)arrow_forwardQuestion 4 The plot below represents the function f(x) 8 7 3 pts O -4-3-2-1 6 5 4 3 2 + 1 2 3 5 -2+ Evaluate f(3) f(3) = Solve f(x) = 3 x= Question 5arrow_forwardQuestion 14 6+ 5 4 3 2 -8-2 2 3 4 5 6 + 2 3 4 -5 -6 The graph above is a transformation of the function f(x) = |x| Write an equation for the function graphed above g(x) =arrow_forward
- Question 8 Use the graph of f to evaluate the following: 6 f(x) 5 4 3 2 1 -1 1 2 3 4 5 -1 t The average rate of change of f from 4 to 5 = Question 9 10 ☑ 4parrow_forwardQuestion 15 ✓ 6 pts 1 Details The function shown below is f(x). We are interested in the transformed function g(x) = 3f(2x) - 1 a) Describe all the transformations g(x) has made to f(x) (shifts, stretches, etc). b) NEATLY sketch the transformed function g(x) and upload your graph as a PDF document below. You may use graph paper if you want. Be sure to label your vertical and horizontal scales so that I can tell how big your function is. 1- 0 2 3 4 -1- Choose File No file chosen Question 16 0 pts 1 Detailsarrow_forwardhelparrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)