(a)
Interpretation:
The electron-rich sites and electron-poor sites in the given elementary steps are to be identified.
Concept introduction:
An atom with partial or full negative charge is an electron-rich site whereas an atom with partial or full positive charge is an electron-poor site. In an elementary step, electrons tend to flow from an electron-rich site to an electron-poor site.
(b)
Interpretation:
In each of the given elementary steps, the appropriate curved arrows are to be drawn.
Concept introduction:
A curved arrow can be drawn from an electron-rich site to an electron-poor site to show the flow of electrons from electron-rich site to electron-poor site. The first curved arrow is drawn from the lone pair of negatively charged atom of electron-rich site to the less electronegative atom of electron-poor site. The second curved arrow is drawn from the region between the less electronegative atom and more electronegative atom towards the more electronegative atom indicating the breaking of the bond.
(c)
Interpretation:
The names of each elementary step are to be identified.
Concept introduction:
The coordination reaction is a Lewis acid-base reaction. A Lewis acid is an electron-pair acceptor, having an atom which lacks an octet. An electron-pair donor is a termed as a Lewis base. In a coordination step, the single curved arrow indicates the flow of electrons from an electron-rich site to an electron-poor site.
The elementary step that occurs with the breaking of a single bond, where both the electrons from that bond end up with one of the atoms initially involved in the bond, is called heterolysis step.
The elementary step in which a species containing a nonpolar
In electrophilic elimination reaction, the electrophile is eliminated from the carbocation, generating a stable, uncharged, organic species by forming a
Trending nowThis is a popular solution!
Chapter 7 Solutions
Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
- Please correct answer and don't used hand raitingarrow_forwardFor each molecule below, predict whether the molecule would be expected to show aromatic character or not. Explain your answer in each case. These molecule are planner. [THREE] a. b. HIN: (14) annulene C. OH d. :0: :0: +arrow_forwardDrawing Instructions: Draw structures corresponding to each of the given names. a. Draw: 2-ethyl-1,3-butadiene b. Name:arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardс. d. СнЗ Сизена=-4=4 Cla H Eget3 над f. e. H-C=C-CH3 + 285 → H-C=C-CH3+2не H-C=C-CH3 + Nanta» g+ CH₂ CH₂-G = G-C₁₂-G=CH₂ + 2HI→ H H H ALarrow_forwardThe IR (infrared) spectra of two pure compounds (0.010 M compound A in solvent and 0.010 M compound B in solvent) are given. The pathlength of the cell is 1.00 cm. The y-axis in the spectra is transmittance rather than absorption, so that the wavenumbers at which there is a dip in the curve correspond to absorption peaks. A mixture of A and B in unknown concentrations gave a percent transmittance of 49.8% at 2976 cm¹ and 44.9% at 3030 cm-1 Wavenumber 0.010 M A 0.010 M B Unknown 3030 cm-1 35.0% 93.0% 44.9% 2976 cm-¹ 76.0% 42.0% 49.8% What are the concentrations of A and B in the unknown sample? Transmittance (%) 100 90 80 70 60 50 40 2976 cm-1 30 3030 cm-1 20 Pure A 10 Pure B 0 3040 2990 Wavenumber (cm-1) 2940 2890arrow_forward
- synthesize 1-propyne starting with propane.arrow_forwardstarting reactant IV target + enantiomer 1) BH3, THF 2) H₂O2, NaOH, H₂O 1) Hg(OAc)2, THF, H₂O (or ROH) 2) NaBH4 D2, Pt/C H₂, Pt/C D2, Lindlar catalyst or Ni₂B H₂, Lindlar catalyst or Ni₂B NaNH, OH/H₂O or SH/H₂S H₂O/H₂O 1) 03 2) H₂O 1) 03 2) (CH3)2S HBr, w/ROOR HBr, (cold, dark, no ROOR) Naº, NH3(e) NBS (trace Br2), light HgSO4, H2SO4, H₂O Naº, ROH 1) Sia₂BH, THF 2) H2O2, NaOH, H₂O H3O/ROH or H₂O*/RSH OR/ROH or SR/RSH 1) OsO4, NMO 2) NaHSO3, H₂O 1) MCPBA (peroxy acid) 2) H3O, H2O (or ROH or RSH) KMnO4 (warm, concentrated) Br₂/H₂O Br₂, heat or light Br2, cold, dark, no peroxides (CH3)3CO(CH3)3COH ROH or RSH H₂O KMnO4/OH (cold, dilute)arrow_forwardNonearrow_forward
- Indicate whether the ability of atoms to associate with each other depends on electron affinity.arrow_forward1) Write the reduction half reactions and find the reduction potential for each pair.a. Zn/Zn2+b. Cu/Cu2+c. Al/Al3+d. Ag/Ag1+ 2) For each of the following voltaic cells, identify the anode, cathode, write the standard cell notation/diagram, and predict the cell potential.arrow_forwardThe following reaction is first order in NO2. Solve the differential rate equation to create the integrated rate law. NO2 (g) -> NO(g) + O (g)arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning