Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
2nd Edition
ISBN: 9780393655551
Author: KARTY, Joel
Publisher: W. W. Norton & Company
Question
Book Icon
Chapter 7, Problem 7.35P
Interpretation Introduction

(a)

Interpretation:

The curved arrow notation for the elimination of H+ from the carbocation shown is to be drawn along with the product.

Concept introduction:

Curved arrows are used to represent the movement of electrons in a reaction mechanism. The arrow starts on an electron-rich atom or an electron-rich region such as a pi bond. It ends on an electron poor atom when the movement results in the formation of a new sigma bond. If the result is the formation of a pi bond, the arrow ends in the region between the two atoms that form the bond.

A carbocation is a positively charged carbon atom that is electron-poor, two electrons short of an octet. A nearby bond or a lone pair on a nearby atom acts as an electron-rich region and can transfer the pair of electrons to the electron-poor atom. This can result in the formation of a more stable neutral species, accompanied by the loss of an electrophile. The electrophile may be a proton or another cationic species and is extracted by any base that may be present.

Interpretation Introduction

(b)

Interpretation:

The curved arrow notation for the elimination of SO3H+ from the carbocation shown is to be drawn along with the product.

Concept introduction:

Curved arrows are used to represent the movement of electrons in a reaction mechanism. The arrow starts on an electron-rich atom or an electron-rich region such as a pi bond. It ends on an electron poor atom when the movement results in the formation of a new sigma bond. If the result is the formation of a pi bond, the arrow ends in the region between the two atoms that form the bond.

A carbocation is a positively charged carbon atom that is electron-poor, two electrons short of an octet. A nearby bond or a lone pair on a nearby atom acts as an electron-rich region and can transfer the pair of electrons to the electron-poor atom. This can result in the formation of a more stable neutral species, accompanied by the loss of an electrophile. The electrophile may be a proton or another cationic species and is extracted by any base that may be present.

Blurred answer
Students have asked these similar questions
1. How many neighbors does the proton that produces the multiplet below have? 2. 3. اللـ Draw a partial structure from the multiplet below. (The integration of the multiplet is 6) M Using the additivity constants found in appendix G of your lab manual, calculate the approximate chemical shifts of the protons indicated below. (Show your work!!!) B A Br SH
1) Suppose 0.1 kg ice at 0°C (273K) is in 0.5kg water at 20°C (293K). What is the change in entropy of the ice as it melts at 0°?    To produce the original "water gas" mixture, carbon (in a combustible form known as coke) is reacted with steam: 131.4 kJ + H20(g) + C(s) → CO(g) + H2(g) From this information and the equations in the previous problem, calculate the enthalpy for the combustion or carbon to form carbon dioxide.   kindly show me how to solve this long problem. Thanks
4. An 'H-NMR of a compound is acquired. The integration for signal A is 5692 and the integration for signal B is 25614. What is the simplest whole number ratio of protons for signals A and B? (Show your work!!!) 5. Assign the carbons in the NMR below as either carbonyl, aromatic, or alkyl. 200 150 100 50 ō (ppm) 1

Chapter 7 Solutions

Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning