Concept explainers
(a)
Interpretation: The major organic products that would result from the reaction of
Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or
Three principal factors that affect the competition between substitution and elimination: basicity of the nucleophile, steric hindrance in the alkyl halide, and steric bulk around the nucleophilic atom. The bases such as hydroxide ion, alkoxide ion, amide ion, tertiary amines are highly strong bases that favor elimination over substitution. On the other hand bases such as methanol, halides, alkyl phosphines, azides, cyanides, acetates are regarded as weak bases and they form substitution products in greater ratios than elimination products.
Analogous to the case that strong nucleophiles are more favored to react via
(b)
Interpretation: The major organic products that would result from the reaction of
Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or
Analogous to the case that strong nucleophiles are more favored to react via
(c)
Interpretation: The major organic products that would result from the reaction of
Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or
Analogous to the case that strong nucleophiles are more favored to react via
(d)
Interpretation: The major organic products that would result from the reaction of
Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of
Analogous to the case that strong nucleophiles are more favored to react via
(e)
Interpretation: The major organic products that would result from the reaction of
Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or
Analogous to the case that strong nucleophiles are more favored to react via
(f)
Interpretation: The major organic products that would result from the reaction of
Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or
Analogous to the case that strong nucleophiles are more favored to react via
(g)
Interpretation: The major organic products that would result from the reaction of
Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or
Analogous to the case that strong nucleophiles are more favored to react via
(h)
Interpretation: The major organic products that would result from the reaction of
Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or
Analogous to the case that strong nucleophiles are more favored to react via
(i)
Interpretation: The major organic products that would result from the reaction of
Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene. Stronger the base more is the probability of elimination over substitution over elimination. Further, if the still higher concentration is employed reaction proceeds via bimolecular elimination. On the other hand, the weak base waits until the carbocation is formed and the type of elimination with a relatively weak base is two-step elimination or
Analogous to the case that strong nucleophiles are more favored to react via
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
ORGANIC CHEMISTRY (LL)-PACKAGE
- Draw the Lewis structure of C2H4Oarrow_forwarda) 5. Circle all acidic (and anticoplanar to the Leaving group) protons in the following molecules, Solve these elimination reactions, and identify the major and minor products where appropriate: 20 points + NaOCH3 Br (2 productarrow_forwardNonearrow_forward
- Dr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v Varrow_forwardExperiment: Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.arrow_forwardRel. Intensity Q 1. Which one of the following is true of the compound whose mass spectrum is shown here? Explain how you decided. 100 a) It contains chlorine. b) It contains bromine. c) It contains neither chlorine nor bromine. 80- 60- 40- 20- 0.0 0.0 TT 40 80 120 160 m/z 2. Using the Table of IR Absorptions how could you distinguish between these two compounds in the IR? What absorbance would one compound have that the other compound does not? HO CIarrow_forward
- Illustrate reaction mechanisms of alkenes with water in the presence of H2SO4, detailing each step of the process. Please show steps of processing. Please do both, I will thumb up for sure #1 #3arrow_forwardDraw the following molecule: (Z)-1-chloro-1-butenearrow_forwardIdentify the molecule as having a(n) E, Z, cis, or trans configuration. CH3 H₁₂C ○ E ○ z ○ cis transarrow_forward
- Identify the molecule as having a(n) E, Z, cis, or trans configuration. H₂C- CH3 О Е ○ cis ○ transarrow_forwardThe decomposition of dinitrogen pentoxide according to the equation: 50°C 2 N2O5(g) 4 NO2(g) + O2(g) follows first-order kinetics with a rate constant of 0.0065 s-1. If the initial concentration of N2O5 is 0.275 M, determine: the final concentration of N2O5 after 180 seconds. ...arrow_forwardDon't used hand raitingarrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning