
Concept explainers
A Rotating Beacon Suppose that a fire truck is parked in front of a building as shown in the figure.
The beacon light on top of the fire truck is located 10 feet from the wall and has a light on each side. If the beacon light rotates 1 revolution every 2 seconds, then a model for determining the distance , in feet, that the beacon of light is from point A on the wall after seconds is given by
(a) Graph for .
(b) For what values of is the function undefined? Explain what this means in terms of the beam of light on the wall.
(c) Fill in the following table.
(d) Compute , and so on, for each consecutive value of . These are called first differences.
(e) Interpret the first differences found in part . What is happening to the speed of the beam of light as increases?

To find:
a. Graph for .
Answer to Problem 52AYU
Solution:
a.

Explanation of Solution
Given:
The function .
Calculation:
a. Graphing the given expression in either a graphing calculator, or using the method outlined in the solutions and using the vertical reflection operation needed to reflect the negative halves of the tangent into the positive side of the y-axis for the absolute value operation. We obtain the following graph.

To find:
b. For what values of t is the function undefined? Explain what this means in terms of the beam of light o the wall.
Answer to Problem 52AYU
Solution:
b.
Explanation of Solution
Given:
The function .
Calculation:
b. since , this function is undefined when for integer . in the interval provided the undefined values are going to be:
, from this list we choose the first two, since the third is outside the range given.
In terms of the light these times correspond to the times when the light beam is parallel to the wall, where it intersect the wall at infinity, which makes for either time point. Assuming the light is rotating counterclockwise in the figure given, and noting that for , which corresponds to time when the light is pointing straight at the wall at point , then corresponding to the time when the light is pointing directly in the front of truck parallel to the wall. Then one second after that (the time it takes that same beam to traverse the other half of the rotation)the beam is pointing directly behind the truck, parallel to the wall.

To find:
c. Fill in the following table.
Answer to Problem 52AYU
Solution:
c.
Explanation of Solution
Given:
The function .
Calculation:
c.

To find:
d. Compute and so on, for each consecutive value of .
Answer to Problem 52AYU
Solution:
d.
Explanation of Solution
Given:
The function .
Calculation:
d.

To find:
e. Interpret the first differences found in part d. What is happening to the speed of the beam of light as increases?
Answer to Problem 52AYU
Solution:
e. The results in part d are like an approximation to the velocity of the light beam along width of the wall. We see that as the beam travels further away from point , the of the beam increases, and is in fact nonlinear in its variation (since for equal increments in time the differences in these first differences is not uniform). In fact as we approach the point where the light detaches from the wall at infinity the velocity increases all the way to infinity, as told by the converging upon the vertical line of the asymptote.
Explanation of Solution
Given:
The function .
Calculation:
e. The results in part d are like an approximation to the velocity of the light beam along width of the wall. We see that as the beam travels further away from point , the of the beam increases, and is in fact nonlinear in its variation (since for equal increments in time the differences in these first differences is not uniform). In fact as we approach the point where the light detaches from the wall at infinity the velocity increases all the way to infinity, as told by the converging upon the vertical line of the asymptote.
Chapter 6 Solutions
Precalculus
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
Basic Business Statistics, Student Value Edition
Elementary Statistics: Picturing the World (7th Edition)
University Calculus: Early Transcendentals (4th Edition)
Pre-Algebra Student Edition
College Algebra with Modeling & Visualization (5th Edition)
- Given f(x)=1/x-1 and g(x)=1/x+3, the domain of f(g(x)) in interval notation.arrow_forwardGood Day, Kindly assist with the following query. Regards,arrow_forwardExample 1 Solve the following differential equations: dy dx ex = 3x²-6x+5 dy dx = 4, y(0) = 3 x dy dx 33 = 5x3 +4 Prof. Robdera 5 -10:54 1x ㅁ +arrow_forward
- 21. First-Order Constant-Coefficient Equations. a. Substituting y = ert, find the auxiliary equation for the first-order linear equation ay+by = 0, where a and b are constants with a 0. b. Use the result of part (a) to find the general solution.arrow_forwardLet f be a function whose graph consists of 5 line segments and a semicircle as shown in the figure below. Let g(x) = √ƒƒ(t) dt . 0 3 2 -2 2 4 5 6 7 8 9 10 11 12 13 14 15 1. g(0) = 2. g(2) = 3. g(4) = 4. g(6) = 5. g'(3) = 6. g'(13)=arrow_forwardThe expression 3 | (3+1/+1) of the following integrals? A Ов E + + + + 18 3+1+1 3++1 3++1 (A) √2×14 dx x+1 (C) 1½-½√ √ ² ( 14 ) d x (B) √31dx (D) So 3+x -dx is a Riemann sum approximation of which 5 (E) 1½√√3dx 2x+1arrow_forward
- 2. Suppose the population of Wakanda t years after 2000 is given by the equation f(t) = 45000(1.006). If this trend continues, in what year will the population reach 50,000 people? Show all your work, round your answer to two decimal places, and include units. (4 points)arrow_forward3. Solve the equation, give the answer exactly (no calculator approximations), and show all your work. (4 points) log5 2x = 3arrow_forwardLet I = f(x) dx, where f is the function whose graph is shown. 4 2 y f X 1 2 3 4 (a) Use the graph to find L2, R2 and M2. R₂ M2 = = = (b) Are these underestimates or overestimates of I? O 42 is an underestimate. O 42 is an overestimate. ◇ R2 is an underestimate. OR2 is an overestimate. OM2 is an underestimate. ○ M2 is an overestimate. (c) Use the graph to find T2. T₂ =arrow_forward
- Vector u has a magnitude of 23 and vector v has a magnitude of 83. The angle between the two vectors is 126 degrees.a) Draw a fully-labelled vector diagram showing the two vectors and the resultant vector when they are added together.b) Find the magnitude of the resultant vector.c) Find the direction of the resultant vector relative to vector u. Solding by finding the x and y of the vectors and addingarrow_forwardFind the range and all the answers. Remark that the range isn’t between -(pi/2) and (pi/2)arrow_forwardPlease draw a detailed grapharrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





