Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.4, Problem 10P
Program Plan Intro
Write a code to find the critical points of the given system and construct the phase portrait.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
None
The circular rod shown is made of the steel alloy AISI 4140 OQT 900. It has a diameter of
1.00 in and an initial length of 48 in. An axial tensile load of 15 000 lb. is applied during a
certain operation.
Compute:
1. the equivalent spring constant K,
2. the deformation X of the rod.
The Young's modulus of the steel is known to be 30,000,000 psi.
F=15 000 lb
L= 48 in
F=15 000 lb
PROBLEM 24 - 0589:
A forced oscillator is a system
whose behavior can be
described by a second-order
linear differential equation of
the form:
ÿ + Ajý + A2y (t) =
(1)
where A1, A2 are positive
%3D
E(t)
constants and E(t) is an external
forcing input. An automobile
suspension system, with the
road as a vertical forcing input, is a
forced oscillator, for
example, as shown in Figure #1.
Another example is an RLC circuit
connected in series with
an electromotive force generator
E(t), as shown in Figure #2.
Given the initial conditions y(0) =
Yo and y(0) = zo , write a
%3D
FORTRAN program that uses the
modified Euler method to
simulate this system from t = 0 to t
= tf if:
Case 1:
E(t) = h whereh is
%3D
constant
Case 2:
E(t) is a pulse of
height h and width (t2 - t1) .
Case 3:
E(t) is a sinusoid of
amplitude A, period 2n/w
and phase angle p .
E(t) is a pulse train
Case 4:
with height h, width W,
period pW and
beginning at time t =
Chapter 6 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 6.1 - Prob. 1PCh. 6.1 - Prob. 2PCh. 6.1 - Prob. 3PCh. 6.1 - Prob. 4PCh. 6.1 - Prob. 5PCh. 6.1 - Prob. 6PCh. 6.1 - Prob. 7PCh. 6.1 - Prob. 8PCh. 6.1 - Prob. 9PCh. 6.1 - Prob. 10P
Ch. 6.1 - Prob. 11PCh. 6.1 - Prob. 12PCh. 6.1 - Prob. 13PCh. 6.1 - Prob. 14PCh. 6.1 - Prob. 15PCh. 6.1 - Prob. 16PCh. 6.1 - Prob. 17PCh. 6.1 - Prob. 18PCh. 6.1 - Prob. 19PCh. 6.1 - Prob. 20PCh. 6.1 - Prob. 21PCh. 6.1 - Prob. 22PCh. 6.1 - Prob. 23PCh. 6.1 - Prob. 24PCh. 6.1 - Prob. 25PCh. 6.1 - Prob. 26PCh. 6.1 - Prob. 27PCh. 6.1 - Prob. 28PCh. 6.1 - Prob. 29PCh. 6.1 - Prob. 30PCh. 6.2 - Prob. 1PCh. 6.2 - Prob. 2PCh. 6.2 - Prob. 3PCh. 6.2 - Prob. 4PCh. 6.2 - Prob. 5PCh. 6.2 - Prob. 6PCh. 6.2 - Prob. 7PCh. 6.2 - Prob. 8PCh. 6.2 - Prob. 9PCh. 6.2 - Prob. 10PCh. 6.2 - Prob. 11PCh. 6.2 - Prob. 12PCh. 6.2 - Prob. 13PCh. 6.2 - Prob. 14PCh. 6.2 - Prob. 15PCh. 6.2 - Prob. 16PCh. 6.2 - Prob. 17PCh. 6.2 - Prob. 18PCh. 6.2 - Prob. 19PCh. 6.2 - Prob. 20PCh. 6.2 - Prob. 21PCh. 6.2 - Prob. 22PCh. 6.2 - Prob. 23PCh. 6.2 - Prob. 24PCh. 6.2 - Prob. 25PCh. 6.2 - Prob. 26PCh. 6.2 - Prob. 27PCh. 6.2 - Prob. 28PCh. 6.2 - Prob. 29PCh. 6.2 - Prob. 30PCh. 6.2 - Prob. 31PCh. 6.2 - Prob. 32PCh. 6.2 - Prob. 33PCh. 6.2 - Prob. 34PCh. 6.2 - Prob. 35PCh. 6.2 - Prob. 36PCh. 6.2 - Prob. 37PCh. 6.2 - Prob. 38PCh. 6.3 - Prob. 1PCh. 6.3 - Prob. 2PCh. 6.3 - Prob. 3PCh. 6.3 - Prob. 4PCh. 6.3 - Prob. 5PCh. 6.3 - Prob. 6PCh. 6.3 - Prob. 7PCh. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Prob. 11PCh. 6.3 - Prob. 12PCh. 6.3 - Prob. 13PCh. 6.3 - Prob. 14PCh. 6.3 - Prob. 15PCh. 6.3 - Prob. 16PCh. 6.3 - Prob. 17PCh. 6.3 - Prob. 18PCh. 6.3 - Prob. 19PCh. 6.3 - Prob. 20PCh. 6.3 - Prob. 21PCh. 6.3 - Prob. 22PCh. 6.3 - Prob. 23PCh. 6.3 - Prob. 24PCh. 6.3 - Prob. 25PCh. 6.3 - Prob. 26PCh. 6.3 - Prob. 27PCh. 6.3 - Prob. 28PCh. 6.3 - Prob. 29PCh. 6.3 - Prob. 30PCh. 6.3 - Prob. 31PCh. 6.3 - Prob. 32PCh. 6.3 - Prob. 33PCh. 6.3 - Prob. 34PCh. 6.4 - Prob. 1PCh. 6.4 - Prob. 2PCh. 6.4 - Prob. 3PCh. 6.4 - Prob. 4PCh. 6.4 - Prob. 5PCh. 6.4 - Prob. 6PCh. 6.4 - Prob. 7PCh. 6.4 - Prob. 8PCh. 6.4 - Prob. 9PCh. 6.4 - Prob. 10PCh. 6.4 - Prob. 11PCh. 6.4 - Prob. 12PCh. 6.4 - Prob. 13PCh. 6.4 - Prob. 14PCh. 6.4 - Prob. 15PCh. 6.4 - Prob. 16PCh. 6.4 - Prob. 17PCh. 6.4 - Prob. 18PCh. 6.4 - Prob. 19PCh. 6.4 - Prob. 20PCh. 6.4 - Prob. 21PCh. 6.4 - Prob. 22PCh. 6.4 - Prob. 23PCh. 6.4 - Prob. 24PCh. 6.4 - Prob. 25PCh. 6.4 - Prob. 26P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Ans [3.43A , 0.506 , 2.12A , 0.942] Q16/ The star-connected rotor of a 3-phase induction motor has a resistance and standstill reactance 0.4 Q/phase respectively. The e.m.f. induced between the slip rings at standstill is 80V, the stator being connected to a normal supply voltage. Find the rotor current and power factor at starting when the rings are (i) short-circuited (ii) joined to star-connected Ans [18.25A , 0.16,7.76 , 0.91] resistance of 52/phase.arrow_forwardThe cross-sectional area: A = (π/4) d^2arrow_forwardAn aluminum wire having a cross-sectional area equal to 4.60 x 10-6 m? carries a current of 7.50 A. The density of aluminum is 2.70 g/cm³. Assume each aluminum atom supplies one conduction electron per atom. Find the drift speed of the electrons in the wire. 1.95E-4 The equation for the drift velocity includes the number of charge carriers per volume, which in this case is equal to the number of atoms per volume. How do you calculate that if you know the density and the atomic weight of aluminum? mm/sarrow_forward
- PROBLEM 24 - 0586: A free harmonic oscillator (FHO) is a system whose behavior can be described by a second- order, linear differential equation of the form: = -Ay(t) (1) where A is a positive constant. Two FHO systems are a spring-mass system and an LC electric circuit: Y=dy/dt y(t) Spring- x- FHO V displacement =velocit q-charge in coulombs mass LC i circuit =curren in ampere Given the initial conditions y(0) = %3D Yo and y(0) = Zo , write a FORTRAN program that uses the modified Euler method to simulate this system from t = 0 to t %3D = tf . LINEAR SPRING OF STIFFNESS K C INDUCTOR CAPACITOR (HENRYS) 1 IM MASS (FARADS)arrow_forwardWe wish to coat a glass surface with an appropriate dielectric layer to provide total transmission from air to the glass at a free-space wavelength of 570 nm. The glass has refractive index n3 = 1.45. Determine the required index for the coating and its minimum thicknessarrow_forwardshow all the workarrow_forward
- 1) Given the sinusoidal voltage v(t) 50 cos(30t + 10°) V, find: (a) the amplitude Vm, (b) the period T, (c) the frequency f, and (d) v(t) at t= 10 ms.arrow_forwardDetermine the transfer function, of the rotational mechanical system shown in T(s) Figure Q2. The variables 6,(t) and 02(t) refer to angular displacement of motion, while T(t) is a torque applied to the system. Given the value of spring, damping coefficient and inertia as; J: 5 kg-m? Di: 5 N-m-s/rad J2: 10 kg-m? K : 6 N-m/rad K2 : 5 N-m/rad D::4 N-m-s/rad D3:2 N-m-s/rad T(t) e,(1) D2 K2 0000 D1 D3 Figure Q2arrow_forward3. You have seen how Kirchhoff's laws were used in your lectures to obtain a 2nd order differential equation where we solved for the current. This time we will use an even simpler concept: principle of conservation of energy to derive the 2nd order differential equation where we will solve for the charge. Take a look at the circuit below. IHE 2F In the circuit above, we have a capacitor with capacitance 2 F, an inductor of inductance 5 H and a resistor of 32 (a) The total energy that is supplied to the resistor is LI? E = 2 Q? 20 where L is the inductance, I is the current, C is the capacitance and Q is the charge. Write down the total energy supplied E in terms of Q and t only. OP Remember that I = dt (b) Now you know that the power dissipation through a resistor is -1R. Use the conservation of energy (energy gain rate = energy loss rate) to derive the differential equation in terms Q and t only. (c) Solve the differential equation for initial charge to be Qo with a initial current of…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks ColeC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr