Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.2, Problem 32P
Program Plan Intro
Write a code to find out the critical points and investigate the type for the given linear system and construct a phase portrait.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
PROBLEM 24 - 0589:
A forced oscillator is a system
whose behavior can be
described by a second-order
linear differential equation of
the form:
ÿ + Ajý + A2y (t) =
(1)
where A1, A2 are positive
%3D
E(t)
constants and E(t) is an external
forcing input. An automobile
suspension system, with the
road as a vertical forcing input, is a
forced oscillator, for
example, as shown in Figure #1.
Another example is an RLC circuit
connected in series with
an electromotive force generator
E(t), as shown in Figure #2.
Given the initial conditions y(0) =
Yo and y(0) = zo , write a
%3D
FORTRAN program that uses the
modified Euler method to
simulate this system from t = 0 to t
= tf if:
Case 1:
E(t) = h whereh is
%3D
constant
Case 2:
E(t) is a pulse of
height h and width (t2 - t1) .
Case 3:
E(t) is a sinusoid of
amplitude A, period 2n/w
and phase angle p .
E(t) is a pulse train
Case 4:
with height h, width W,
period pW and
beginning at time t =
PROBLEM 24 - 0586:
A free harmonic oscillator (FHO) is
a system whose behavior
can be described by a second-
order, linear differential
equation of the form:
= -Ay(t)
(1)
where A is a positive constant.
Two FHO systems are a
spring-mass system and an LC
electric circuit:
Y=dy/dt
y(t)
Spring- x-
FHO
V
displacement =velocit
q-charge in
coulombs
mass
LC
i
circuit
=curren
in
ampere
Given the initial conditions y(0) =
%3D
Yo and y(0) = Zo , write a
FORTRAN program that uses the
modified Euler method to
simulate this system from t = 0 to t
%3D
= tf .
LINEAR SPRING
OF STIFFNESS K
C
INDUCTOR
CAPACITOR
(HENRYS)
1 IM MASS
(FARADS)
I need the answer as soon as possible
Chapter 6 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 6.1 - Prob. 1PCh. 6.1 - Prob. 2PCh. 6.1 - Prob. 3PCh. 6.1 - Prob. 4PCh. 6.1 - Prob. 5PCh. 6.1 - Prob. 6PCh. 6.1 - Prob. 7PCh. 6.1 - Prob. 8PCh. 6.1 - Prob. 9PCh. 6.1 - Prob. 10P
Ch. 6.1 - Prob. 11PCh. 6.1 - Prob. 12PCh. 6.1 - Prob. 13PCh. 6.1 - Prob. 14PCh. 6.1 - Prob. 15PCh. 6.1 - Prob. 16PCh. 6.1 - Prob. 17PCh. 6.1 - Prob. 18PCh. 6.1 - Prob. 19PCh. 6.1 - Prob. 20PCh. 6.1 - Prob. 21PCh. 6.1 - Prob. 22PCh. 6.1 - Prob. 23PCh. 6.1 - Prob. 24PCh. 6.1 - Prob. 25PCh. 6.1 - Prob. 26PCh. 6.1 - Prob. 27PCh. 6.1 - Prob. 28PCh. 6.1 - Prob. 29PCh. 6.1 - Prob. 30PCh. 6.2 - Prob. 1PCh. 6.2 - Prob. 2PCh. 6.2 - Prob. 3PCh. 6.2 - Prob. 4PCh. 6.2 - Prob. 5PCh. 6.2 - Prob. 6PCh. 6.2 - Prob. 7PCh. 6.2 - Prob. 8PCh. 6.2 - Prob. 9PCh. 6.2 - Prob. 10PCh. 6.2 - Prob. 11PCh. 6.2 - Prob. 12PCh. 6.2 - Prob. 13PCh. 6.2 - Prob. 14PCh. 6.2 - Prob. 15PCh. 6.2 - Prob. 16PCh. 6.2 - Prob. 17PCh. 6.2 - Prob. 18PCh. 6.2 - Prob. 19PCh. 6.2 - Prob. 20PCh. 6.2 - Prob. 21PCh. 6.2 - Prob. 22PCh. 6.2 - Prob. 23PCh. 6.2 - Prob. 24PCh. 6.2 - Prob. 25PCh. 6.2 - Prob. 26PCh. 6.2 - Prob. 27PCh. 6.2 - Prob. 28PCh. 6.2 - Prob. 29PCh. 6.2 - Prob. 30PCh. 6.2 - Prob. 31PCh. 6.2 - Prob. 32PCh. 6.2 - Prob. 33PCh. 6.2 - Prob. 34PCh. 6.2 - Prob. 35PCh. 6.2 - Prob. 36PCh. 6.2 - Prob. 37PCh. 6.2 - Prob. 38PCh. 6.3 - Prob. 1PCh. 6.3 - Prob. 2PCh. 6.3 - Prob. 3PCh. 6.3 - Prob. 4PCh. 6.3 - Prob. 5PCh. 6.3 - Prob. 6PCh. 6.3 - Prob. 7PCh. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Prob. 11PCh. 6.3 - Prob. 12PCh. 6.3 - Prob. 13PCh. 6.3 - Prob. 14PCh. 6.3 - Prob. 15PCh. 6.3 - Prob. 16PCh. 6.3 - Prob. 17PCh. 6.3 - Prob. 18PCh. 6.3 - Prob. 19PCh. 6.3 - Prob. 20PCh. 6.3 - Prob. 21PCh. 6.3 - Prob. 22PCh. 6.3 - Prob. 23PCh. 6.3 - Prob. 24PCh. 6.3 - Prob. 25PCh. 6.3 - Prob. 26PCh. 6.3 - Prob. 27PCh. 6.3 - Prob. 28PCh. 6.3 - Prob. 29PCh. 6.3 - Prob. 30PCh. 6.3 - Prob. 31PCh. 6.3 - Prob. 32PCh. 6.3 - Prob. 33PCh. 6.3 - Prob. 34PCh. 6.4 - Prob. 1PCh. 6.4 - Prob. 2PCh. 6.4 - Prob. 3PCh. 6.4 - Prob. 4PCh. 6.4 - Prob. 5PCh. 6.4 - Prob. 6PCh. 6.4 - Prob. 7PCh. 6.4 - Prob. 8PCh. 6.4 - Prob. 9PCh. 6.4 - Prob. 10PCh. 6.4 - Prob. 11PCh. 6.4 - Prob. 12PCh. 6.4 - Prob. 13PCh. 6.4 - Prob. 14PCh. 6.4 - Prob. 15PCh. 6.4 - Prob. 16PCh. 6.4 - Prob. 17PCh. 6.4 - Prob. 18PCh. 6.4 - Prob. 19PCh. 6.4 - Prob. 20PCh. 6.4 - Prob. 21PCh. 6.4 - Prob. 22PCh. 6.4 - Prob. 23PCh. 6.4 - Prob. 24PCh. 6.4 - Prob. 25PCh. 6.4 - Prob. 26P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- 1) Given the sinusoidal voltage v(t) 50 cos(30t + 10°) V, find: (a) the amplitude Vm, (b) the period T, (c) the frequency f, and (d) v(t) at t= 10 ms.arrow_forwardshow all the workarrow_forwardQ.4 In an experimental setup, mineral oil is filled in between the narrow gap of two horizontal smooth plates. The setup has arrangements to maintain the plates at desired uniform temperatures. At these temperatures, ONLY the radiative heat flux is negligible. The thermal conductivity of the oil does not vary perceptibly in this temperature range. Consider four experiments at steady state under different experimental conditions, as shown in the figure Q1. The figure shows plate temperatures and the heat fluxes in the vertical direction. What is the steady state heat flux (in W m) with the top plate at 90°C and the bottom plate at 45°C? [4] 30°C 70°C 40°C 90°C flux = 39 Wm-2 flux =30 Wm2 flux = 52 Wm 2 flux ? Wm-2 60°C 35°C 80°C 45°C Experiment 1 Experiment 2 Experiment 3 Experiment 4arrow_forward
- I need the answer as soon as possiblearrow_forwardA beam containing 1000 monoenergetic photons applied to material with a thickness of 0.5cm and linear attenuation coefficient of 82 x 1 m-1. Find the number of outgoing beam.arrow_forwardDetermine the transfer function, of the rotational mechanical system shown in T(s) Figure Q2. The variables 6,(t) and 02(t) refer to angular displacement of motion, while T(t) is a torque applied to the system. Given the value of spring, damping coefficient and inertia as; J: 5 kg-m? Di: 5 N-m-s/rad J2: 10 kg-m? K : 6 N-m/rad K2 : 5 N-m/rad D::4 N-m-s/rad D3:2 N-m-s/rad T(t) e,(1) D2 K2 0000 D1 D3 Figure Q2arrow_forward
- A tube 1.30 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.357 m long and has a mass of 9.50 g. It is fixed at both ends and oscillates in its fundamental mode. By resonance, it sets the air column in the tube into oscillation at that column's fundamental frequency. Assume that the speed of sound in air is 343 m/s, find (a) that frequency and (b) the tension in the wire. (a) Number i 66.0 (b) Number i Units Hz Unitsarrow_forwardNonearrow_forwardThe circular rod shown is made of the steel alloy AISI 4140 OQT 900. It has a diameter of 1.00 in and an initial length of 48 in. An axial tensile load of 15 000 lb. is applied during a certain operation. Compute: 1. the equivalent spring constant K, 2. the deformation X of the rod. The Young's modulus of the steel is known to be 30,000,000 psi. F=15 000 lb L= 48 in F=15 000 lbarrow_forward
- 1.) The distribution of I & Q is zero-mean Gaussian; their phase, amplitude, and power are uniform, Rayleigh, and Exponential distribution. Using the given I & Q data to show these distributions. Requirements: In this project, please use the I & Q data from 1000 gate to demonstrate these PDFS. Data from azimuthal angle between 5° to 30°, range between 20 km to 50 km are suggested used in this analysis.arrow_forwardAns [3.43A , 0.506 , 2.12A , 0.942] Q16/ The star-connected rotor of a 3-phase induction motor has a resistance and standstill reactance 0.4 Q/phase respectively. The e.m.f. induced between the slip rings at standstill is 80V, the stator being connected to a normal supply voltage. Find the rotor current and power factor at starting when the rings are (i) short-circuited (ii) joined to star-connected Ans [18.25A , 0.16,7.76 , 0.91] resistance of 52/phase.arrow_forward2. Heat conduction in a square plate Three sides of a rectangular plate (@ = 5 m, b = 4 m) are kept at a temperature of 0 C and one side is kept at a temperature C, as shown in the figure. Determine and plot the ; temperature distribution T(x, y) in the plate. The temperature distribution, T(x, y) in the plate can be determined by solving the two-dimensional heat equation. For the given boundary conditions T(x, y) can be expressed analytically by a Fourier series (Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, 1993):arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr