Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.1, Problem 2P
Program Plan Intro
Write a code to find a critical point of the given differential equation and sketch a phase portrait of the given system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For an object of mass m=3 kg to slide without friction up the rise of height h=1 m shown, it must have a
minimum initial kinetic energy (in J) of:
h
O a. 40
O b. 20
O c. 30
O d. 10
Q.4 In an experimental setup, mineral oil is filled in between the narrow gap of two horizontal smooth
plates. The setup has arrangements to maintain the plates at desired uniform temperatures. At these
temperatures, ONLY the radiative heat flux is negligible. The thermal conductivity of the oil does not
vary perceptibly in this temperature range. Consider four experiments at steady state under different
experimental conditions, as shown in the figure Q1. The figure shows plate temperatures and the heat
fluxes in the vertical direction. What is the steady state heat flux (in W m) with the top plate at 90°C and
the bottom plate at 45°C?
[4]
30°C
70°C
40°C
90°C
flux = 39 Wm-2
flux =30 Wm2
flux = 52 Wm 2
flux ? Wm-2
60°C
35°C
80°C
45°C
Experiment 1
Experiment 2
Experiment 3
Experiment 4
Problem 1
The position x as a function of time of a particle that moves along a straight line is given by:
r(1) = (-3 + 41)c 0. f1
0.1t
The velocity v(t) of the particle is determined by the derivative of r(t) with respect to t, and the accelerationa(t) is determined
by the derivative ofv(t) with respect to t. Derive the expressions for the velocity and acceleration of the particle, and make
plots of the position, velocity, and acceleration as functions of time for0
Chapter 6 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 6.1 - Prob. 1PCh. 6.1 - Prob. 2PCh. 6.1 - Prob. 3PCh. 6.1 - Prob. 4PCh. 6.1 - Prob. 5PCh. 6.1 - Prob. 6PCh. 6.1 - Prob. 7PCh. 6.1 - Prob. 8PCh. 6.1 - Prob. 9PCh. 6.1 - Prob. 10P
Ch. 6.1 - Prob. 11PCh. 6.1 - Prob. 12PCh. 6.1 - Prob. 13PCh. 6.1 - Prob. 14PCh. 6.1 - Prob. 15PCh. 6.1 - Prob. 16PCh. 6.1 - Prob. 17PCh. 6.1 - Prob. 18PCh. 6.1 - Prob. 19PCh. 6.1 - Prob. 20PCh. 6.1 - Prob. 21PCh. 6.1 - Prob. 22PCh. 6.1 - Prob. 23PCh. 6.1 - Prob. 24PCh. 6.1 - Prob. 25PCh. 6.1 - Prob. 26PCh. 6.1 - Prob. 27PCh. 6.1 - Prob. 28PCh. 6.1 - Prob. 29PCh. 6.1 - Prob. 30PCh. 6.2 - Prob. 1PCh. 6.2 - Prob. 2PCh. 6.2 - Prob. 3PCh. 6.2 - Prob. 4PCh. 6.2 - Prob. 5PCh. 6.2 - Prob. 6PCh. 6.2 - Prob. 7PCh. 6.2 - Prob. 8PCh. 6.2 - Prob. 9PCh. 6.2 - Prob. 10PCh. 6.2 - Prob. 11PCh. 6.2 - Prob. 12PCh. 6.2 - Prob. 13PCh. 6.2 - Prob. 14PCh. 6.2 - Prob. 15PCh. 6.2 - Prob. 16PCh. 6.2 - Prob. 17PCh. 6.2 - Prob. 18PCh. 6.2 - Prob. 19PCh. 6.2 - Prob. 20PCh. 6.2 - Prob. 21PCh. 6.2 - Prob. 22PCh. 6.2 - Prob. 23PCh. 6.2 - Prob. 24PCh. 6.2 - Prob. 25PCh. 6.2 - Prob. 26PCh. 6.2 - Prob. 27PCh. 6.2 - Prob. 28PCh. 6.2 - Prob. 29PCh. 6.2 - Prob. 30PCh. 6.2 - Prob. 31PCh. 6.2 - Prob. 32PCh. 6.2 - Prob. 33PCh. 6.2 - Prob. 34PCh. 6.2 - Prob. 35PCh. 6.2 - Prob. 36PCh. 6.2 - Prob. 37PCh. 6.2 - Prob. 38PCh. 6.3 - Prob. 1PCh. 6.3 - Prob. 2PCh. 6.3 - Prob. 3PCh. 6.3 - Prob. 4PCh. 6.3 - Prob. 5PCh. 6.3 - Prob. 6PCh. 6.3 - Prob. 7PCh. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Prob. 11PCh. 6.3 - Prob. 12PCh. 6.3 - Prob. 13PCh. 6.3 - Prob. 14PCh. 6.3 - Prob. 15PCh. 6.3 - Prob. 16PCh. 6.3 - Prob. 17PCh. 6.3 - Prob. 18PCh. 6.3 - Prob. 19PCh. 6.3 - Prob. 20PCh. 6.3 - Prob. 21PCh. 6.3 - Prob. 22PCh. 6.3 - Prob. 23PCh. 6.3 - Prob. 24PCh. 6.3 - Prob. 25PCh. 6.3 - Prob. 26PCh. 6.3 - Prob. 27PCh. 6.3 - Prob. 28PCh. 6.3 - Prob. 29PCh. 6.3 - Prob. 30PCh. 6.3 - Prob. 31PCh. 6.3 - Prob. 32PCh. 6.3 - Prob. 33PCh. 6.3 - Prob. 34PCh. 6.4 - Prob. 1PCh. 6.4 - Prob. 2PCh. 6.4 - Prob. 3PCh. 6.4 - Prob. 4PCh. 6.4 - Prob. 5PCh. 6.4 - Prob. 6PCh. 6.4 - Prob. 7PCh. 6.4 - Prob. 8PCh. 6.4 - Prob. 9PCh. 6.4 - Prob. 10PCh. 6.4 - Prob. 11PCh. 6.4 - Prob. 12PCh. 6.4 - Prob. 13PCh. 6.4 - Prob. 14PCh. 6.4 - Prob. 15PCh. 6.4 - Prob. 16PCh. 6.4 - Prob. 17PCh. 6.4 - Prob. 18PCh. 6.4 - Prob. 19PCh. 6.4 - Prob. 20PCh. 6.4 - Prob. 21PCh. 6.4 - Prob. 22PCh. 6.4 - Prob. 23PCh. 6.4 - Prob. 24PCh. 6.4 - Prob. 25PCh. 6.4 - Prob. 26P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- A tube 1.30 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.357 m long and has a mass of 9.50 g. It is fixed at both ends and oscillates in its fundamental mode. By resonance, it sets the air column in the tube into oscillation at that column's fundamental frequency. Assume that the speed of sound in air is 343 m/s, find (a) that frequency and (b) the tension in the wire. (a) Number i 66.0 (b) Number i Units Hz Unitsarrow_forward2. Heat conduction in a square plate Three sides of a rectangular plate (@ = 5 m, b = 4 m) are kept at a temperature of 0 C and one side is kept at a temperature C, as shown in the figure. Determine and plot the ; temperature distribution T(x, y) in the plate. The temperature distribution, T(x, y) in the plate can be determined by solving the two-dimensional heat equation. For the given boundary conditions T(x, y) can be expressed analytically by a Fourier series (Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, 1993):arrow_forward2. The flight of a model rocket can be modeled as follows. During the first 0.15 s the rocket is propelled upward by the rocket engine with a force of 16 N. The rocket then flies up while slowing down under the force of gravity. After it reaches the apex, the rocket starts to fall back down. When its downward velocity reaches 20 m/s, a parachute opens (assumed to open instantly), and the rocket continues to drop at a constant speed of 20 m/s until it hits the ground. Write a program that calculates and plots the speed and altitude of the rocket as a function of time during the flight.arrow_forward
- 1) A 0.1 kg object oscillates as a simple harmonic motion along the ? −axis with a frequency ? = 3.185 Hz. At a position ?1 , the object has a kinetic energy of 0.7 J and a potential energy 0.3 J. The amplitude of oscillation, ?, is: (a) 0.12 m (b)0.22 m (c) 0.31 m (d)0.42 m 2) A block of mass m is attached to a spring with force constant, ? and oscillate at a frequency ?. If the mass is changed to ?′ = ?/2, and the spring force is changed to ? ′ = 2?, then the new frequency ?′ of the oscillation would be, (a) ?′ = 2? (b)?′ = ? (c) ? ′ = ?/2 (d)?′ = 4? The following given is for questions 3 and 4: A block of mass ? = ? kg is attached to a spring with spring constant ? = ??? N/m, and set to oscillates on a frictionless horizontal surface. At time ? = ? its position is ?? = ? and its velocity is ?? = +? m/s. 3) Which of the following is true about the oscillation amplitude and the phase constant, : (a)A = 0.5, 2 (b)A = 0.5, 2 (c) A = 0.25,…arrow_forwardProvide a MATLAB code using laplace and ilaplace commands that will be able to solve the application of second-order differential equation simple harmonic motion word problem: Assume an object weighing 2 lb stretches a spring 6 in Find the equation of motion if the spring is released from the equilibrium position with an upward velocity of 16 ft/sec. What is the period of the motion? Solution We finst need to find the spring constant. We have mg ka -() We aso know thet weight W equals the product of mass m and the acceleration due to gravity s. In Englih unts, the acceleration due to grovity is 32 sec. Wmg 2- m(32) 16 Thus, the diferential eqution representing this system is Multiplying through by 16, we get + 6lr0, which can also be writen in the form + (z- 0. This equation has the general solution () = , con8) + ain(). The mos was released from the equlibrium postion, so r0) -0, and it had an inital upward velocity of 16 isec, oz 10) - -16 Applying these intial conditions to solve…arrow_forwardQuestion No.15: a.) Explain Bezier equation with algorithm and the method of construction of curve from trajectory lines. b.) Compare line, surface and solid modeling in every aspect for industrial applications with examplesarrow_forward
- Problem 3 In class, we solved for the vorticity distribution for a "real" line vortex diffusing in a viscous fluid. Integrate this vorticity distribution to find the tangential velocity as a function of radius. Plot the velocity distributions for a a line vortex of circulation 0.5 mls in 20 °C air for times of 1, 10, and 100 seconds.arrow_forwardQ1: Consider a surface of revolution generated by a Bezier curve defined by the four control points P(0,0,0), (2,1,2), P₂ (3,3,0) P, (2,2,3) respectively, rotating about the X-axis. Calculate the point on the surface at u = 0.25, 0= π/2.arrow_forward2. The Lorenz equations originating from models of atmospheric physics are given as follows: dr = 10 (y - 2) dt (2a) %3D dy 28r – y -rz (2b) dt dz ay - 2.6666672 (2c) dt with initial conditions r(0) = y(0) = 2(0) = 5. (a) Evaluate the eigenvalues of the Jacobian matrix at t = 0. Is the problem stiff? Estimate the maximum time step that can be selected to keep the solution stable when the fourth-order Runge-Kutta method is used. (b) Solve the given system to t = 50 using the fourth-order Runge-Kutta method. Set the time step to 0.1. Plot the solution. All three functions (2(t), y(t), z(t)) should be present on one plot. • Set the time step to 10 3 and 10 6. Plot r(t) obtained at the three time steps (the first one is 0.1 from above) on one plot. Describe the behaviour. How does the value of the time step affect the result? Set the time step to 10-6 and use the initial conditions r(0) = y(0) = 5.0 and 2(0) = 5.00001. Plot z(t) obtained at the two different sets of initial conditions on…arrow_forward
- PROBLEM 24 - 0589: A forced oscillator is a system whose behavior can be described by a second-order linear differential equation of the form: ÿ + Ajý + A2y (t) = (1) where A1, A2 are positive %3D E(t) constants and E(t) is an external forcing input. An automobile suspension system, with the road as a vertical forcing input, is a forced oscillator, for example, as shown in Figure #1. Another example is an RLC circuit connected in series with an electromotive force generator E(t), as shown in Figure #2. Given the initial conditions y(0) = Yo and y(0) = zo , write a %3D FORTRAN program that uses the modified Euler method to simulate this system from t = 0 to t = tf if: Case 1: E(t) = h whereh is %3D constant Case 2: E(t) is a pulse of height h and width (t2 - t1) . Case 3: E(t) is a sinusoid of amplitude A, period 2n/w and phase angle p . E(t) is a pulse train Case 4: with height h, width W, period pW and beginning at time t =arrow_forwardThe quarter ring shown has a mass m and was cut from a thin, uniform plate. Knowing that ri = r2, determine the mass moment of inertia of the quarter ring with respect to (a) the axis AA', (b) the centroidal axis CC' that is perpendicular to the plane of the quarter ring. A' 12 B' C' Aarrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr