Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.2, Problem 20P
Program Plan Intro
Write a code to investigate the type of the critical point for the given linear system and construct a phase portrait.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. calculates the trajectory r(t) and stores the coordinates for time steps At as a nested list trajectory that contains [[xe, ye,
ze], [x1, y1, z1], [x2, y2, z2], ...]. Start from time t = 0 and use a time step At = 0.01; the last data point in the
trajectory should be the time when the oscillator "hits the ground", i.e., when z(t) ≤ 0;
3. stores the time for hitting the ground (i.e., the first time t when z(t) ≤ 0) in the variable t_contact and the corresponding positions
in the variables x_contact, y_contact, and z_contact. Print
t_contact = 1.430
X_contact = 0.755
y contact = -0.380
z_contact =
(Output floating point numbers with 3 decimals using format (), e.g., "t_contact = {:.3f}" .format(t_contact).) The partial
example output above is for ze = 10.
4. calculates the average x- and y-coordinates
1
y =
Yi
N
where the x, y, are the x(t), y(t) in the trajectory and N is the number of data points that you calculated.
Store the result as a list in the variable center = [x_avg, y_avg]…
Q.4 In an experimental setup, mineral oil is filled in between the narrow gap of two horizontal smooth
plates. The setup has arrangements to maintain the plates at desired uniform temperatures. At these
temperatures, ONLY the radiative heat flux is negligible. The thermal conductivity of the oil does not
vary perceptibly in this temperature range. Consider four experiments at steady state under different
experimental conditions, as shown in the figure Q1. The figure shows plate temperatures and the heat
fluxes in the vertical direction. What is the steady state heat flux (in W m) with the top plate at 90°C and
the bottom plate at 45°C?
[4]
30°C
70°C
40°C
90°C
flux = 39 Wm-2
flux =30 Wm2
flux = 52 Wm 2
flux ? Wm-2
60°C
35°C
80°C
45°C
Experiment 1
Experiment 2
Experiment 3
Experiment 4
A damper (or dashpot) is connected to the mass M of the
previous problem. This could represent air resistance. The
entire system could be a simple model of an automobile
wheel suspension system (assuming the automobile body
immobile in a vertical direction). Then the damper acts as a
shock absorber. As before, the system is displaced and
released and x(tg) = x, and v(to) = vo - It can be shown that
the motion of the system Is described by the following
differential equation:
Mx + Dx + Kx(t) = 0
where D is the damping factor of the dashpot and x = v(t) =
velocity at time t. Model and simulate the motion of the
system from timet= to to t= tf, using a digital computer
program, FIG. 1
DAMPER
3 SPRING
FIG.I
M
MASS
Chapter 6 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 6.1 - Prob. 1PCh. 6.1 - Prob. 2PCh. 6.1 - Prob. 3PCh. 6.1 - Prob. 4PCh. 6.1 - Prob. 5PCh. 6.1 - Prob. 6PCh. 6.1 - Prob. 7PCh. 6.1 - Prob. 8PCh. 6.1 - Prob. 9PCh. 6.1 - Prob. 10P
Ch. 6.1 - Prob. 11PCh. 6.1 - Prob. 12PCh. 6.1 - Prob. 13PCh. 6.1 - Prob. 14PCh. 6.1 - Prob. 15PCh. 6.1 - Prob. 16PCh. 6.1 - Prob. 17PCh. 6.1 - Prob. 18PCh. 6.1 - Prob. 19PCh. 6.1 - Prob. 20PCh. 6.1 - Prob. 21PCh. 6.1 - Prob. 22PCh. 6.1 - Prob. 23PCh. 6.1 - Prob. 24PCh. 6.1 - Prob. 25PCh. 6.1 - Prob. 26PCh. 6.1 - Prob. 27PCh. 6.1 - Prob. 28PCh. 6.1 - Prob. 29PCh. 6.1 - Prob. 30PCh. 6.2 - Prob. 1PCh. 6.2 - Prob. 2PCh. 6.2 - Prob. 3PCh. 6.2 - Prob. 4PCh. 6.2 - Prob. 5PCh. 6.2 - Prob. 6PCh. 6.2 - Prob. 7PCh. 6.2 - Prob. 8PCh. 6.2 - Prob. 9PCh. 6.2 - Prob. 10PCh. 6.2 - Prob. 11PCh. 6.2 - Prob. 12PCh. 6.2 - Prob. 13PCh. 6.2 - Prob. 14PCh. 6.2 - Prob. 15PCh. 6.2 - Prob. 16PCh. 6.2 - Prob. 17PCh. 6.2 - Prob. 18PCh. 6.2 - Prob. 19PCh. 6.2 - Prob. 20PCh. 6.2 - Prob. 21PCh. 6.2 - Prob. 22PCh. 6.2 - Prob. 23PCh. 6.2 - Prob. 24PCh. 6.2 - Prob. 25PCh. 6.2 - Prob. 26PCh. 6.2 - Prob. 27PCh. 6.2 - Prob. 28PCh. 6.2 - Prob. 29PCh. 6.2 - Prob. 30PCh. 6.2 - Prob. 31PCh. 6.2 - Prob. 32PCh. 6.2 - Prob. 33PCh. 6.2 - Prob. 34PCh. 6.2 - Prob. 35PCh. 6.2 - Prob. 36PCh. 6.2 - Prob. 37PCh. 6.2 - Prob. 38PCh. 6.3 - Prob. 1PCh. 6.3 - Prob. 2PCh. 6.3 - Prob. 3PCh. 6.3 - Prob. 4PCh. 6.3 - Prob. 5PCh. 6.3 - Prob. 6PCh. 6.3 - Prob. 7PCh. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Prob. 11PCh. 6.3 - Prob. 12PCh. 6.3 - Prob. 13PCh. 6.3 - Prob. 14PCh. 6.3 - Prob. 15PCh. 6.3 - Prob. 16PCh. 6.3 - Prob. 17PCh. 6.3 - Prob. 18PCh. 6.3 - Prob. 19PCh. 6.3 - Prob. 20PCh. 6.3 - Prob. 21PCh. 6.3 - Prob. 22PCh. 6.3 - Prob. 23PCh. 6.3 - Prob. 24PCh. 6.3 - Prob. 25PCh. 6.3 - Prob. 26PCh. 6.3 - Prob. 27PCh. 6.3 - Prob. 28PCh. 6.3 - Prob. 29PCh. 6.3 - Prob. 30PCh. 6.3 - Prob. 31PCh. 6.3 - Prob. 32PCh. 6.3 - Prob. 33PCh. 6.3 - Prob. 34PCh. 6.4 - Prob. 1PCh. 6.4 - Prob. 2PCh. 6.4 - Prob. 3PCh. 6.4 - Prob. 4PCh. 6.4 - Prob. 5PCh. 6.4 - Prob. 6PCh. 6.4 - Prob. 7PCh. 6.4 - Prob. 8PCh. 6.4 - Prob. 9PCh. 6.4 - Prob. 10PCh. 6.4 - Prob. 11PCh. 6.4 - Prob. 12PCh. 6.4 - Prob. 13PCh. 6.4 - Prob. 14PCh. 6.4 - Prob. 15PCh. 6.4 - Prob. 16PCh. 6.4 - Prob. 17PCh. 6.4 - Prob. 18PCh. 6.4 - Prob. 19PCh. 6.4 - Prob. 20PCh. 6.4 - Prob. 21PCh. 6.4 - Prob. 22PCh. 6.4 - Prob. 23PCh. 6.4 - Prob. 24PCh. 6.4 - Prob. 25PCh. 6.4 - Prob. 26P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- 2. Interatomic (in pair) forces (energies) wrt distances between. a) Write a prg to obtain the plot of the function of Morse Potential Eq, and then, on that experiment parameters (arguments), to determine the rages of the coefficients that make the function inexplicit and explicit (visible), and save your plots and with your scripts and comments and submit. b) The same for the Lennard-Jones potential Egns. Determine the range of the coefficients you are applying. You need to demonstrate here in three steps!!. Plotting each in parts and adding them up. And submit.arrow_forwardb. Consider the system below described by state and output equations of the state space model * = (, )x+ (-)u; y For this system, prove that it is POSSIBLE to determine the controllability but IMPOSSIBLE to determine the observability.arrow_forwardPlease work out question 44 and show work for explanation of how you came up with your answer.arrow_forward
- 2. Heat conduction in a square plate Three sides of a rectangular plate (@ = 5 m, b = 4 m) are kept at a temperature of 0 C and one side is kept at a temperature C, as shown in the figure. Determine and plot the ; temperature distribution T(x, y) in the plate. The temperature distribution, T(x, y) in the plate can be determined by solving the two-dimensional heat equation. For the given boundary conditions T(x, y) can be expressed analytically by a Fourier series (Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, 1993):arrow_forwardProblem 3 In class, we solved for the vorticity distribution for a "real" line vortex diffusing in a viscous fluid. Integrate this vorticity distribution to find the tangential velocity as a function of radius. Plot the velocity distributions for a a line vortex of circulation 0.5 mls in 20 °C air for times of 1, 10, and 100 seconds.arrow_forwardPLS ANSWERarrow_forward
- Please solve.arrow_forwarda. For the function and point below, find f'(a). b. Determine an equation of the line tangent to the graph of f at (a,f(a)) for the given value of a. f(x) = 2x°, a = 1 %3D ..... a. f'(a) =arrow_forwardConsider the function as given. (a) Use a computer algebra system to graph the function and use the graph to approximate the critical numbers visually. (b) Use a computer algebra system to find f′ and approximate the critical numbers. Are the results the same as the visual approximation in part (a)? Explain.arrow_forward
- Question No.15: a.) Explain Bezier equation with algorithm and the method of construction of curve from trajectory lines. b.) Compare line, surface and solid modeling in every aspect for industrial applications with examplesarrow_forwardAn aluminum wire having a cross-sectional area equal to 4.60 x 10-6 m? carries a current of 7.50 A. The density of aluminum is 2.70 g/cm³. Assume each aluminum atom supplies one conduction electron per atom. Find the drift speed of the electrons in the wire. 1.95E-4 The equation for the drift velocity includes the number of charge carriers per volume, which in this case is equal to the number of atoms per volume. How do you calculate that if you know the density and the atomic weight of aluminum? mm/sarrow_forwardA tube 1.30 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.357 m long and has a mass of 9.50 g. It is fixed at both ends and oscillates in its fundamental mode. By resonance, it sets the air column in the tube into oscillation at that column's fundamental frequency. Assume that the speed of sound in air is 343 m/s, find (a) that frequency and (b) the tension in the wire. (a) Number i 66.0 (b) Number i Units Hz Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr