Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.2, Problem 30P
Program Plan Intro
Write a code to find out the critical points and investigate the type for the given linear system and construct a phase portrait.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
PROBLEM 24 - 0589:
A forced oscillator is a system
whose behavior can be
described by a second-order
linear differential equation of
the form:
ÿ + Ajý + A2y (t) =
(1)
where A1, A2 are positive
%3D
E(t)
constants and E(t) is an external
forcing input. An automobile
suspension system, with the
road as a vertical forcing input, is a
forced oscillator, for
example, as shown in Figure #1.
Another example is an RLC circuit
connected in series with
an electromotive force generator
E(t), as shown in Figure #2.
Given the initial conditions y(0) =
Yo and y(0) = zo , write a
%3D
FORTRAN program that uses the
modified Euler method to
simulate this system from t = 0 to t
= tf if:
Case 1:
E(t) = h whereh is
%3D
constant
Case 2:
E(t) is a pulse of
height h and width (t2 - t1) .
Case 3:
E(t) is a sinusoid of
amplitude A, period 2n/w
and phase angle p .
E(t) is a pulse train
Case 4:
with height h, width W,
period pW and
beginning at time t =
PROBLEM 24 - 0586:
A free harmonic oscillator (FHO) is
a system whose behavior
can be described by a second-
order, linear differential
equation of the form:
= -Ay(t)
(1)
where A is a positive constant.
Two FHO systems are a
spring-mass system and an LC
electric circuit:
Y=dy/dt
y(t)
Spring- x-
FHO
V
displacement =velocit
q-charge in
coulombs
mass
LC
i
circuit
=curren
in
ampere
Given the initial conditions y(0) =
%3D
Yo and y(0) = Zo , write a
FORTRAN program that uses the
modified Euler method to
simulate this system from t = 0 to t
%3D
= tf .
LINEAR SPRING
OF STIFFNESS K
C
INDUCTOR
CAPACITOR
(HENRYS)
1 IM MASS
(FARADS)
I need the answer as soon as possible
Chapter 6 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 6.1 - Prob. 1PCh. 6.1 - Prob. 2PCh. 6.1 - Prob. 3PCh. 6.1 - Prob. 4PCh. 6.1 - Prob. 5PCh. 6.1 - Prob. 6PCh. 6.1 - Prob. 7PCh. 6.1 - Prob. 8PCh. 6.1 - Prob. 9PCh. 6.1 - Prob. 10P
Ch. 6.1 - Prob. 11PCh. 6.1 - Prob. 12PCh. 6.1 - Prob. 13PCh. 6.1 - Prob. 14PCh. 6.1 - Prob. 15PCh. 6.1 - Prob. 16PCh. 6.1 - Prob. 17PCh. 6.1 - Prob. 18PCh. 6.1 - Prob. 19PCh. 6.1 - Prob. 20PCh. 6.1 - Prob. 21PCh. 6.1 - Prob. 22PCh. 6.1 - Prob. 23PCh. 6.1 - Prob. 24PCh. 6.1 - Prob. 25PCh. 6.1 - Prob. 26PCh. 6.1 - Prob. 27PCh. 6.1 - Prob. 28PCh. 6.1 - Prob. 29PCh. 6.1 - Prob. 30PCh. 6.2 - Prob. 1PCh. 6.2 - Prob. 2PCh. 6.2 - Prob. 3PCh. 6.2 - Prob. 4PCh. 6.2 - Prob. 5PCh. 6.2 - Prob. 6PCh. 6.2 - Prob. 7PCh. 6.2 - Prob. 8PCh. 6.2 - Prob. 9PCh. 6.2 - Prob. 10PCh. 6.2 - Prob. 11PCh. 6.2 - Prob. 12PCh. 6.2 - Prob. 13PCh. 6.2 - Prob. 14PCh. 6.2 - Prob. 15PCh. 6.2 - Prob. 16PCh. 6.2 - Prob. 17PCh. 6.2 - Prob. 18PCh. 6.2 - Prob. 19PCh. 6.2 - Prob. 20PCh. 6.2 - Prob. 21PCh. 6.2 - Prob. 22PCh. 6.2 - Prob. 23PCh. 6.2 - Prob. 24PCh. 6.2 - Prob. 25PCh. 6.2 - Prob. 26PCh. 6.2 - Prob. 27PCh. 6.2 - Prob. 28PCh. 6.2 - Prob. 29PCh. 6.2 - Prob. 30PCh. 6.2 - Prob. 31PCh. 6.2 - Prob. 32PCh. 6.2 - Prob. 33PCh. 6.2 - Prob. 34PCh. 6.2 - Prob. 35PCh. 6.2 - Prob. 36PCh. 6.2 - Prob. 37PCh. 6.2 - Prob. 38PCh. 6.3 - Prob. 1PCh. 6.3 - Prob. 2PCh. 6.3 - Prob. 3PCh. 6.3 - Prob. 4PCh. 6.3 - Prob. 5PCh. 6.3 - Prob. 6PCh. 6.3 - Prob. 7PCh. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Prob. 11PCh. 6.3 - Prob. 12PCh. 6.3 - Prob. 13PCh. 6.3 - Prob. 14PCh. 6.3 - Prob. 15PCh. 6.3 - Prob. 16PCh. 6.3 - Prob. 17PCh. 6.3 - Prob. 18PCh. 6.3 - Prob. 19PCh. 6.3 - Prob. 20PCh. 6.3 - Prob. 21PCh. 6.3 - Prob. 22PCh. 6.3 - Prob. 23PCh. 6.3 - Prob. 24PCh. 6.3 - Prob. 25PCh. 6.3 - Prob. 26PCh. 6.3 - Prob. 27PCh. 6.3 - Prob. 28PCh. 6.3 - Prob. 29PCh. 6.3 - Prob. 30PCh. 6.3 - Prob. 31PCh. 6.3 - Prob. 32PCh. 6.3 - Prob. 33PCh. 6.3 - Prob. 34PCh. 6.4 - Prob. 1PCh. 6.4 - Prob. 2PCh. 6.4 - Prob. 3PCh. 6.4 - Prob. 4PCh. 6.4 - Prob. 5PCh. 6.4 - Prob. 6PCh. 6.4 - Prob. 7PCh. 6.4 - Prob. 8PCh. 6.4 - Prob. 9PCh. 6.4 - Prob. 10PCh. 6.4 - Prob. 11PCh. 6.4 - Prob. 12PCh. 6.4 - Prob. 13PCh. 6.4 - Prob. 14PCh. 6.4 - Prob. 15PCh. 6.4 - Prob. 16PCh. 6.4 - Prob. 17PCh. 6.4 - Prob. 18PCh. 6.4 - Prob. 19PCh. 6.4 - Prob. 20PCh. 6.4 - Prob. 21PCh. 6.4 - Prob. 22PCh. 6.4 - Prob. 23PCh. 6.4 - Prob. 24PCh. 6.4 - Prob. 25PCh. 6.4 - Prob. 26P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Determine the transfer function, of the rotational mechanical system shown in T(s) Figure Q2. The variables 6,(t) and 02(t) refer to angular displacement of motion, while T(t) is a torque applied to the system. Given the value of spring, damping coefficient and inertia as; J: 5 kg-m? Di: 5 N-m-s/rad J2: 10 kg-m? K : 6 N-m/rad K2 : 5 N-m/rad D::4 N-m-s/rad D3:2 N-m-s/rad T(t) e,(1) D2 K2 0000 D1 D3 Figure Q2arrow_forwardFind the differential equation from the transfer of the function for the Giving following system and draw the block diagram of the system. 3 H = x(s) u(s) 0.5s + 1arrow_forwardNonearrow_forward
- 1.) The distribution of I & Q is zero-mean Gaussian; their phase, amplitude, and power are uniform, Rayleigh, and Exponential distribution. Using the given I & Q data to show these distributions. Requirements: In this project, please use the I & Q data from 1000 gate to demonstrate these PDFS. Data from azimuthal angle between 5° to 30°, range between 20 km to 50 km are suggested used in this analysis.arrow_forwardQuestionarrow_forwardThe circular rod shown is made of the steel alloy AISI 4140 OQT 900. It has a diameter of 1.00 in and an initial length of 48 in. An axial tensile load of 15 000 lb. is applied during a certain operation. Compute: 1. the equivalent spring constant K, 2. the deformation X of the rod. The Young's modulus of the steel is known to be 30,000,000 psi. F=15 000 lb L= 48 in F=15 000 lbarrow_forward
- Ans [3.43A , 0.506 , 2.12A , 0.942] Q16/ The star-connected rotor of a 3-phase induction motor has a resistance and standstill reactance 0.4 Q/phase respectively. The e.m.f. induced between the slip rings at standstill is 80V, the stator being connected to a normal supply voltage. Find the rotor current and power factor at starting when the rings are (i) short-circuited (ii) joined to star-connected Ans [18.25A , 0.16,7.76 , 0.91] resistance of 52/phase.arrow_forwardIn the Bohr model of the hydrogen atom, an electron in the 4th excited state moves at a speed of 1.37 x 105 m/s in a circular path of radius 8.46 x 1010 m. What is the effective current associated with this orbiting electron? 4.12373E3 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. mAarrow_forwardProvide a MATLAB code using laplace and ilaplace commands that will be able to solve the application of second-order differential equation simple harmonic motion word problem: Assume an object weighing 2 lb stretches a spring 6 in Find the equation of motion if the spring is released from the equilibrium position with an upward velocity of 16 ft/sec. What is the period of the motion? Solution We finst need to find the spring constant. We have mg ka -() We aso know thet weight W equals the product of mass m and the acceleration due to gravity s. In Englih unts, the acceleration due to grovity is 32 sec. Wmg 2- m(32) 16 Thus, the diferential eqution representing this system is Multiplying through by 16, we get + 6lr0, which can also be writen in the form + (z- 0. This equation has the general solution () = , con8) + ain(). The mos was released from the equlibrium postion, so r0) -0, and it had an inital upward velocity of 16 isec, oz 10) - -16 Applying these intial conditions to solve…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr