Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.1, Problem 11P
Program Plan Intro
Write a code to find the equilibrium solution of the give second order differential equation and construct a phase portrait and direction field for first order system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q.4 In an experimental setup, mineral oil is filled in between the narrow gap of two horizontal smooth
plates. The setup has arrangements to maintain the plates at desired uniform temperatures. At these
temperatures, ONLY the radiative heat flux is negligible. The thermal conductivity of the oil does not
vary perceptibly in this temperature range. Consider four experiments at steady state under different
experimental conditions, as shown in the figure Q1. The figure shows plate temperatures and the heat
fluxes in the vertical direction. What is the steady state heat flux (in W m) with the top plate at 90°C and
the bottom plate at 45°C?
[4]
30°C
70°C
40°C
90°C
flux = 39 Wm-2
flux =30 Wm2
flux = 52 Wm 2
flux ? Wm-2
60°C
35°C
80°C
45°C
Experiment 1
Experiment 2
Experiment 3
Experiment 4
For an object of mass m=3 kg to slide without friction up the rise of height h=1 m shown, it must have a
minimum initial kinetic energy (in J) of:
h
O a. 40
O b. 20
O c. 30
O d. 10
2. Heat conduction in a square plate Three sides of a rectangular plate (@ = 5 m, b = 4 m) are kept at a temperature of 0 C and one side is kept at a temperature C, as shown in the figure. Determine and plot the ; temperature distribution T(x, y) in the plate. The temperature distribution, T(x, y) in the plate can be determined by solving the two-dimensional heat equation. For the given boundary conditions T(x, y) can be expressed analytically by a Fourier series (Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, 1993):
Chapter 6 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 6.1 - Prob. 1PCh. 6.1 - Prob. 2PCh. 6.1 - Prob. 3PCh. 6.1 - Prob. 4PCh. 6.1 - Prob. 5PCh. 6.1 - Prob. 6PCh. 6.1 - Prob. 7PCh. 6.1 - Prob. 8PCh. 6.1 - Prob. 9PCh. 6.1 - Prob. 10P
Ch. 6.1 - Prob. 11PCh. 6.1 - Prob. 12PCh. 6.1 - Prob. 13PCh. 6.1 - Prob. 14PCh. 6.1 - Prob. 15PCh. 6.1 - Prob. 16PCh. 6.1 - Prob. 17PCh. 6.1 - Prob. 18PCh. 6.1 - Prob. 19PCh. 6.1 - Prob. 20PCh. 6.1 - Prob. 21PCh. 6.1 - Prob. 22PCh. 6.1 - Prob. 23PCh. 6.1 - Prob. 24PCh. 6.1 - Prob. 25PCh. 6.1 - Prob. 26PCh. 6.1 - Prob. 27PCh. 6.1 - Prob. 28PCh. 6.1 - Prob. 29PCh. 6.1 - Prob. 30PCh. 6.2 - Prob. 1PCh. 6.2 - Prob. 2PCh. 6.2 - Prob. 3PCh. 6.2 - Prob. 4PCh. 6.2 - Prob. 5PCh. 6.2 - Prob. 6PCh. 6.2 - Prob. 7PCh. 6.2 - Prob. 8PCh. 6.2 - Prob. 9PCh. 6.2 - Prob. 10PCh. 6.2 - Prob. 11PCh. 6.2 - Prob. 12PCh. 6.2 - Prob. 13PCh. 6.2 - Prob. 14PCh. 6.2 - Prob. 15PCh. 6.2 - Prob. 16PCh. 6.2 - Prob. 17PCh. 6.2 - Prob. 18PCh. 6.2 - Prob. 19PCh. 6.2 - Prob. 20PCh. 6.2 - Prob. 21PCh. 6.2 - Prob. 22PCh. 6.2 - Prob. 23PCh. 6.2 - Prob. 24PCh. 6.2 - Prob. 25PCh. 6.2 - Prob. 26PCh. 6.2 - Prob. 27PCh. 6.2 - Prob. 28PCh. 6.2 - Prob. 29PCh. 6.2 - Prob. 30PCh. 6.2 - Prob. 31PCh. 6.2 - Prob. 32PCh. 6.2 - Prob. 33PCh. 6.2 - Prob. 34PCh. 6.2 - Prob. 35PCh. 6.2 - Prob. 36PCh. 6.2 - Prob. 37PCh. 6.2 - Prob. 38PCh. 6.3 - Prob. 1PCh. 6.3 - Prob. 2PCh. 6.3 - Prob. 3PCh. 6.3 - Prob. 4PCh. 6.3 - Prob. 5PCh. 6.3 - Prob. 6PCh. 6.3 - Prob. 7PCh. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Prob. 11PCh. 6.3 - Prob. 12PCh. 6.3 - Prob. 13PCh. 6.3 - Prob. 14PCh. 6.3 - Prob. 15PCh. 6.3 - Prob. 16PCh. 6.3 - Prob. 17PCh. 6.3 - Prob. 18PCh. 6.3 - Prob. 19PCh. 6.3 - Prob. 20PCh. 6.3 - Prob. 21PCh. 6.3 - Prob. 22PCh. 6.3 - Prob. 23PCh. 6.3 - Prob. 24PCh. 6.3 - Prob. 25PCh. 6.3 - Prob. 26PCh. 6.3 - Prob. 27PCh. 6.3 - Prob. 28PCh. 6.3 - Prob. 29PCh. 6.3 - Prob. 30PCh. 6.3 - Prob. 31PCh. 6.3 - Prob. 32PCh. 6.3 - Prob. 33PCh. 6.3 - Prob. 34PCh. 6.4 - Prob. 1PCh. 6.4 - Prob. 2PCh. 6.4 - Prob. 3PCh. 6.4 - Prob. 4PCh. 6.4 - Prob. 5PCh. 6.4 - Prob. 6PCh. 6.4 - Prob. 7PCh. 6.4 - Prob. 8PCh. 6.4 - Prob. 9PCh. 6.4 - Prob. 10PCh. 6.4 - Prob. 11PCh. 6.4 - Prob. 12PCh. 6.4 - Prob. 13PCh. 6.4 - Prob. 14PCh. 6.4 - Prob. 15PCh. 6.4 - Prob. 16PCh. 6.4 - Prob. 17PCh. 6.4 - Prob. 18PCh. 6.4 - Prob. 19PCh. 6.4 - Prob. 20PCh. 6.4 - Prob. 21PCh. 6.4 - Prob. 22PCh. 6.4 - Prob. 23PCh. 6.4 - Prob. 24PCh. 6.4 - Prob. 25PCh. 6.4 - Prob. 26P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Solve the following equations. Be sure to check the potential solution(s) in the original equation, to see whether it (they) are in the domain. (a) log, (r? –x – 2) = 2arrow_forwardPROBLEM 24 - 0589: A forced oscillator is a system whose behavior can be described by a second-order linear differential equation of the form: ÿ + Ajý + A2y (t) = (1) where A1, A2 are positive %3D E(t) constants and E(t) is an external forcing input. An automobile suspension system, with the road as a vertical forcing input, is a forced oscillator, for example, as shown in Figure #1. Another example is an RLC circuit connected in series with an electromotive force generator E(t), as shown in Figure #2. Given the initial conditions y(0) = Yo and y(0) = zo , write a %3D FORTRAN program that uses the modified Euler method to simulate this system from t = 0 to t = tf if: Case 1: E(t) = h whereh is %3D constant Case 2: E(t) is a pulse of height h and width (t2 - t1) . Case 3: E(t) is a sinusoid of amplitude A, period 2n/w and phase angle p . E(t) is a pulse train Case 4: with height h, width W, period pW and beginning at time t =arrow_forwardFind the solution.arrow_forward
- 2. The Lorenz equations originating from models of atmospheric physics are given as follows: dr = 10 (y - 2) dt (2a) %3D dy 28r – y -rz (2b) dt dz ay - 2.6666672 (2c) dt with initial conditions r(0) = y(0) = 2(0) = 5. (a) Evaluate the eigenvalues of the Jacobian matrix at t = 0. Is the problem stiff? Estimate the maximum time step that can be selected to keep the solution stable when the fourth-order Runge-Kutta method is used. (b) Solve the given system to t = 50 using the fourth-order Runge-Kutta method. Set the time step to 0.1. Plot the solution. All three functions (2(t), y(t), z(t)) should be present on one plot. • Set the time step to 10 3 and 10 6. Plot r(t) obtained at the three time steps (the first one is 0.1 from above) on one plot. Describe the behaviour. How does the value of the time step affect the result? Set the time step to 10-6 and use the initial conditions r(0) = y(0) = 5.0 and 2(0) = 5.00001. Plot z(t) obtained at the two different sets of initial conditions on…arrow_forwardgiven the following equation x2 = 16 O a. (+4,-2) O b. (+2,-4) O c. No Solution O d. (+4,-4)arrow_forwardI need the answer as soon as possiblearrow_forward
- V Obtain the expression for y(t) which is satisfying the differential equation ÿ + 3y+ 2y = et y(0)=0 and y(0)=0arrow_forwardSITUATION 1 (Fluid Flow in a Closed Conduit) Consider a fluid, with density (p) of 998.21 kg/m³ and dynamic viscosity (u) of 1.002 x 103 N-s/m², flowing in a 2000-meter long, 50-mm diameter smooth round pipe with velocity of 2.5 m/s. The energy loss on the pipe flow (he) due to friction between the pipe and the fluid is determined using Darcy-Weisbach equation, given as h₁ = f (²) (1/1) where f is the friction factor, L is the length of the pipe, D is the diameter of the pipe, V is the velocity of the flow, and g is the gravitational acceleration. The friction factor may be determined using an empirical equation developed by Nikuradse for flow in smooth pipes, given as 1 =0.869 In (Re√7)-0.8 where Re is the Reynolds number of the flow, determined as VDp R₂ = μl The friction factor equation given is only valid for flows with Reynolds number higher than 4000 (turbulent flow). Guide Questions: Determine the Reynolds number of the flow. Is the Nikuradse equation for friction factor…arrow_forwardb. Consider the system below described by state and output equations of the state space model * = (, )x+ (-)u; y For this system, prove that it is POSSIBLE to determine the controllability but IMPOSSIBLE to determine the observability.arrow_forward
- A tube 1.30 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.357 m long and has a mass of 9.50 g. It is fixed at both ends and oscillates in its fundamental mode. By resonance, it sets the air column in the tube into oscillation at that column's fundamental frequency. Assume that the speed of sound in air is 343 m/s, find (a) that frequency and (b) the tension in the wire. (a) Number i 66.0 (b) Number i Units Hz Unitsarrow_forwardFind the differential equation from the transfer of the function for the Giving following system and draw the block diagram of the system. 3 H = x(s) u(s) 0.5s + 1arrow_forward3. Consider the following nonlinear system of 2 equations with 2 unknowns: x² + 4y? = 1 2² + (y – 1)² = 1 (a) By hand: sketch the two curves in the ry-plane, and find all solutions by doing some basic algebra. (b) By hand: apply two steps of Newton's multivariate method to approximate one of the solutions of the system above starting from (1, 1). (c) Use NewtonMD Maple/Python file to find one of the numerical solution for the above system with six correct decimal places starting from (1.0, 1.0).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole