Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.2, Problem 37P
Program Plan Intro
Write a code to find the critical points and eigenvalues of the given system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A damper (or dashpot) is connected to the mass M of the
previous problem. This could represent air resistance. The
entire system could be a simple model of an automobile
wheel suspension system (assuming the automobile body
immobile in a vertical direction). Then the damper acts as a
shock absorber. As before, the system is displaced and
released and x(tg) = x, and v(to) = vo - It can be shown that
the motion of the system Is described by the following
differential equation:
Mx + Dx + Kx(t) = 0
where D is the damping factor of the dashpot and x = v(t) =
velocity at time t. Model and simulate the motion of the
system from timet= to to t= tf, using a digital computer
program, FIG. 1
DAMPER
3 SPRING
FIG.I
M
MASS
B. Suppose we wish to animate a bouncing ball. We are given keyframes for the ball's motion. The key frames are at
times T = {0, 3, 9, 15} with associated height values of H = {1, 6, 8, 3}.
1. Plot the graph of height versus time using linear interpolation between key frames.
2. Since the ball's speed changes as it falls and as it bounces, linear interpolation will not give a realistic result.
Which method would create the most realistic bounce? And how would the graph look like?
H
16-
14-
12-
10-
8-
6-
4-
2-
0-
→T
4
6
8.
10 12 14 16
A system is said to be completely observable if there exists an unconstrained control u(t) that
can transfer any initial state x(to) to any other desired location x(t) in a finite
time to T.
b. Investigate the observability of the system below.
(X1
X2,
-2
(X1
y = [1 2]
Knowing that X = Ax + Bu and y= Cx.
Chapter 6 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 6.1 - Prob. 1PCh. 6.1 - Prob. 2PCh. 6.1 - Prob. 3PCh. 6.1 - Prob. 4PCh. 6.1 - Prob. 5PCh. 6.1 - Prob. 6PCh. 6.1 - Prob. 7PCh. 6.1 - Prob. 8PCh. 6.1 - Prob. 9PCh. 6.1 - Prob. 10P
Ch. 6.1 - Prob. 11PCh. 6.1 - Prob. 12PCh. 6.1 - Prob. 13PCh. 6.1 - Prob. 14PCh. 6.1 - Prob. 15PCh. 6.1 - Prob. 16PCh. 6.1 - Prob. 17PCh. 6.1 - Prob. 18PCh. 6.1 - Prob. 19PCh. 6.1 - Prob. 20PCh. 6.1 - Prob. 21PCh. 6.1 - Prob. 22PCh. 6.1 - Prob. 23PCh. 6.1 - Prob. 24PCh. 6.1 - Prob. 25PCh. 6.1 - Prob. 26PCh. 6.1 - Prob. 27PCh. 6.1 - Prob. 28PCh. 6.1 - Prob. 29PCh. 6.1 - Prob. 30PCh. 6.2 - Prob. 1PCh. 6.2 - Prob. 2PCh. 6.2 - Prob. 3PCh. 6.2 - Prob. 4PCh. 6.2 - Prob. 5PCh. 6.2 - Prob. 6PCh. 6.2 - Prob. 7PCh. 6.2 - Prob. 8PCh. 6.2 - Prob. 9PCh. 6.2 - Prob. 10PCh. 6.2 - Prob. 11PCh. 6.2 - Prob. 12PCh. 6.2 - Prob. 13PCh. 6.2 - Prob. 14PCh. 6.2 - Prob. 15PCh. 6.2 - Prob. 16PCh. 6.2 - Prob. 17PCh. 6.2 - Prob. 18PCh. 6.2 - Prob. 19PCh. 6.2 - Prob. 20PCh. 6.2 - Prob. 21PCh. 6.2 - Prob. 22PCh. 6.2 - Prob. 23PCh. 6.2 - Prob. 24PCh. 6.2 - Prob. 25PCh. 6.2 - Prob. 26PCh. 6.2 - Prob. 27PCh. 6.2 - Prob. 28PCh. 6.2 - Prob. 29PCh. 6.2 - Prob. 30PCh. 6.2 - Prob. 31PCh. 6.2 - Prob. 32PCh. 6.2 - Prob. 33PCh. 6.2 - Prob. 34PCh. 6.2 - Prob. 35PCh. 6.2 - Prob. 36PCh. 6.2 - Prob. 37PCh. 6.2 - Prob. 38PCh. 6.3 - Prob. 1PCh. 6.3 - Prob. 2PCh. 6.3 - Prob. 3PCh. 6.3 - Prob. 4PCh. 6.3 - Prob. 5PCh. 6.3 - Prob. 6PCh. 6.3 - Prob. 7PCh. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Problems 8 through 10 deal with the competition...Ch. 6.3 - Prob. 11PCh. 6.3 - Prob. 12PCh. 6.3 - Prob. 13PCh. 6.3 - Prob. 14PCh. 6.3 - Prob. 15PCh. 6.3 - Prob. 16PCh. 6.3 - Prob. 17PCh. 6.3 - Prob. 18PCh. 6.3 - Prob. 19PCh. 6.3 - Prob. 20PCh. 6.3 - Prob. 21PCh. 6.3 - Prob. 22PCh. 6.3 - Prob. 23PCh. 6.3 - Prob. 24PCh. 6.3 - Prob. 25PCh. 6.3 - Prob. 26PCh. 6.3 - Prob. 27PCh. 6.3 - Prob. 28PCh. 6.3 - Prob. 29PCh. 6.3 - Prob. 30PCh. 6.3 - Prob. 31PCh. 6.3 - Prob. 32PCh. 6.3 - Prob. 33PCh. 6.3 - Prob. 34PCh. 6.4 - Prob. 1PCh. 6.4 - Prob. 2PCh. 6.4 - Prob. 3PCh. 6.4 - Prob. 4PCh. 6.4 - Prob. 5PCh. 6.4 - Prob. 6PCh. 6.4 - Prob. 7PCh. 6.4 - Prob. 8PCh. 6.4 - Prob. 9PCh. 6.4 - Prob. 10PCh. 6.4 - Prob. 11PCh. 6.4 - Prob. 12PCh. 6.4 - Prob. 13PCh. 6.4 - Prob. 14PCh. 6.4 - Prob. 15PCh. 6.4 - Prob. 16PCh. 6.4 - Prob. 17PCh. 6.4 - Prob. 18PCh. 6.4 - Prob. 19PCh. 6.4 - Prob. 20PCh. 6.4 - Prob. 21PCh. 6.4 - Prob. 22PCh. 6.4 - Prob. 23PCh. 6.4 - Prob. 24PCh. 6.4 - Prob. 25PCh. 6.4 - Prob. 26P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Solve with Python: Compute the steady-state distribution of concentration for the tank shown in Fig. P32.4. The PDE governing this system is D((∂^2c/∂x^2) + (∂^2c/∂y^2)) − kc = 0 and the boundary conditions are as shown. Employ a value of 0.6 for D and 0.1 for k.arrow_forwardThis is a Computer Graphics Question on Phong's Lighting Model. Question: A light source with intensity 50 and radius of influence 100 is located at (4,2,93) from which you are called to calculate the illumination of a point on the yz plane. For no shiny surface and negligible ambient light, find the point on the surface with the highest illumination and light intensity at that point. Given the diffuse coefficient is 0.7.arrow_forwardSimplify the following Boolean functions, using K-maps: F (w, x, y, z)=Σ(11, 12, 13, 14, 15)arrow_forward
- Linear Dynamical system help, PLS more detals and clearly to see.arrow_forwardind the general solution of the following linear systems. Sketch the phase portraits. Pick several points on the phase plane to plot the vector field and show your work. Plot also few trajectories. Please be neat in showing your solutions. Use Matlab to plot the vector field (on one figure) and to plot the solution to the system (on another figure). a)*?′+2?+3?=0 *?′ + 3? + 2? = 0 b)?′ =4?−12? ?′ = 5? + ? c) ?′ = −? + 3 ? ? =−6?−2? d)?′=5?−5? ?′ =5?−3?arrow_forwardSimplify the following Boolean functions, using three-variable K-maps: F(x, y, z)=Σ(0, 1, 2, 3, 5)arrow_forward
- Simplify the following functions using K-maps, and then derive the corresponding simplified Boolean expressions. Note that d stands for don't-care cases. a) F(x, y, z) = (0,2,4,5) b) F(x, y, z) = (0,1,2,3,5) c) F(x, y, z) = Σ(1,2,3,6,7) d) F(x, y, z) = Σ(3,4,5,6,7) e) F(A,B,C,D) = Σ(4,6,7,15) f) F(w, x, y, z) = Σ(0,2,8,10, 12, 13, 14) g) F(w, x, y, z) = Σ(0, 2, 3, 5, 7, 8, 10, 11, 14, 15) h) F(A, B, C, D) = [(1,3,6,9,11,12,14) i) F(x, y, z) = Σ(0,4,5,6) and d(x, y, z) = Σ(2,3,7)arrow_forwardAssume that W is a standard Brownian motion. Explain how to simulate (W1/2, W1) using at least two methods.arrow_forwardPlease make a k-map to simplify the given boolean equation (and list the final simplified expression)(((((Y AND (~Z)) OR ((~Y) AND Z)) OR (~Z)) AND (~(X OR Y))) OR (~(((Y AND (~Z)) OR ((~Y) AND Z)) OR (~Z))) AND (X OR Y))arrow_forward
- Solve in PYTHON OR JUPYTER Consider the differential equation dy/dt = y(a −y^2) for the values a = −1, a = 0 and a = 1 and determine their critical points. Sketch for each of these differential equations their direction field and phase lines. Use these plots to determine whether the critical points are asymptotically stable or unstable.arrow_forwardA simple pendulum of length L, has a maximum angular displacement e_max. At one point in its motion, its kinetic energy is K = 3 J and its potential energy is U = 4.2 J. When the pendulum's angular velocity is one-fourth its maximum value (0' = %3D O'_max/4), then its kinetic energy is:arrow_forwardUsing Matlab software find the simulation and the code for the given problem for Givens plane rotation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education