Given each of the following values, is the starting material or product lower in energy?
a.
b.
c.
d.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Organic Chemistry
- 10.46 Discuss the effect of temperature change on the spontaneity of the following reactions at 1 atm. (a) Al2O3(s)+2Fe(s)2Al(s)+Fe2O3(s) H = 851.5kJ; S =38.5 J/K (b) N2H4(l)N2(g)+2H2(g) H =-50.6 kJ; S= 0.3315 kJ/K (c) SO3(g)SO2(g)+12O2(g) H = 98.9 kJ; S= 0.0939 kJ/Karrow_forwardHydrogenation, the addition of hydrogen to an organic compound, is an industrially important reaction. Calculate rH, rS, and rG for the hydrogenation of octene, C8H16, to give octane, C8H19 at 25 C. Is the reaction product- or reactant-favored at equilibrium? C8H16(g) + H2(g) C8H18(g) Along with data in Appendix L, the following information is needed for this calculation.arrow_forwardCalculate rS for the following reaction at 25 C. 2 H2(g) + O2(g) 2 H2O() (a) 326.6 J/K mol-rxn (b) 139.9 J/K mol-rxn (c) 139.9 J/K mol-rxn (d) 326.6 J/K mol-rxnarrow_forward
- Is Ssurr favorable or unfavorable for exothermic reactions? Endothermic reactions? Explain.arrow_forwardElemental boron, in the form of thin fibers, can be made by reducing a boron halide with H2. BCl3(g) + 32 H2(g) B(s) + 3 HCl(g) Calculate rH, rS, and rG at 25 C for this reaction. Is the reaction predicted to be product-favored at equilibrium at 25 C? If so, is it enthalpy- or entropy-driven? [S for B(s) is 5.86 J/K mol.]arrow_forwardThe free energy of formation of one mole of compound refers to a particular chemical equation. For each of the following, write that equation. a KBr(s) b CH3Cl(l) c H2S(g) d AsH3(g)arrow_forward
- Elemental boron, in the form of thin fibers, can be made by reducing a boron halide with H2. BCl3(g) + 3/2 H2(g) B(s) + 3HCl(g) Calculate H, S, and G at 25 C for this reaction. Is the reaction predicted to be product favored at equilibrium at 25 C? If so, is it enthalpy driven or entropy driven?arrow_forwardWhat information can be determined from G for a reaction? Does one get the same information from G, the standard free energy change? G allows determination of the equilibrium constant K for a reaction. How? How can one estimate the value of K at temperatures other than 25C for a reaction? How can one estimate the temperature where K = 1 for a reaction? Do all reactions have a specific temperature where K = 1?arrow_forwardAll of these substances are stable with respect to decomposition to their elements at 25 C. Which are kinetically stable and which are thermodynamically stable? (a) MgO(s) (b) N2H4() (c) C2H6(g) (d) N2O(g)arrow_forward
- Using values of fH and S, calculate rG for each of the following reactions at 25 C. (a) 2 Na(s) + 2 H2O() 2 NaOH(aq) + H2(g) (b) 6 C(graphite) + 3 H2(g) C6H6() Which of these reactions is (are) predicted to be product-favored at equilibrium? Are the reactions enthalpy- or entropy-driven?arrow_forwardSodium chloride is added to water (at 25C) until it is saturated. Calculate the Cl concentration in such a solution. Species G(kJ/mol) NaCl(s) 384 Na+(aq) 262 Cl(aq) 131arrow_forwardWrite a chemical equation for each process and classify each as reactant-favored or product-favored. (a) A puddle of water evaporates on a summer day. (b) Silicon dioxide (sand) decomposes to the elements Silicon and oxygen. (c) Paper, which is mainly cellulose (C6H10O5)n, bums at a temperature of 451 F. (d) A pinch of sugar dissolves in water at room temperature.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning