a. Which value corresponds to a negative value of
b. Is a unimolecular reaction with five times as much starting material as product at equilibrium, what is the value of
c. Which value corresponds to a larger
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Organic Chemistry
Additional Science Textbook Solutions
General, Organic, and Biological Chemistry - 4th edition
Elementary Principles of Chemical Processes, Binder Ready Version
General, Organic, and Biological Chemistry (3rd Edition)
Organic Chemistry (9th Edition)
- Heating some metal carbonates, among them magnesium carbonate, leads to their decomposition. MgCO3(s) MgO(s) + CO2(g) (a) Calculate rG and rS for the reaction. (b) Is the reaction product-favored at equilibrium at 298 K? (c) Is the reaction predicted to be product-favored at equilibrium at higher temperatures?arrow_forwardElemental boron, in the form of thin fibers, can be made by reducing a boron halide with H2. BCl3(g) + 3/2 H2(g) B(s) + 3HCl(g) Calculate H, S, and G at 25 C for this reaction. Is the reaction predicted to be product favored at equilibrium at 25 C? If so, is it enthalpy driven or entropy driven?arrow_forwardA reaction has H298=100 kj/mol and S298=250 J/mol K. Is the reaction spontaneous at room temperature? If not, under what temperature conditions will it become spontaneous?arrow_forward
- For each process, predict whether entropy increases or decreases, and explain how you arrived at your prediction. 2 CO2(g) → 2 CO(g) + O2(g) NaCl(s) → NaCl(aq) MgCO3(s) → MgO(s) + CO2(g)arrow_forwardExplain why each of the following statements is incorrect. (a) Entropy increases in all spontaneous reactions. (b) Reactions with a negative free energy change (rG 0) are product-favored and occur with rapid transformation of reactants to products. (c) All spontaneous processes are exothermic. (d) Endothermic processes are never spontaneous.arrow_forwardFor each pair of items, tell which has the higher entropy and explain why. (a) Item 1, a sample of solid CO2 at -78°C, or item 2, CO2 vapor at 0°C (b) Item I, solid sugar, or item 2, the same sugar dissolved in a cup of tea (c) Item 1, a 100-mL sample of pure water and a 100-mL sample of pure alcohol, or item 2, the same samples of water and alcohol after they have been poured together and stirredarrow_forward
- Determine whether the reactions listed below are entropy-favored or disfavored under standard conditions. Predict how an increase in temperature will affect the value of rG. (a) I2(g) 2 I(g) (b) 2 SO2(g) + O2(g) 2 SO3(g) (c) SiCl4(g) + 2 H2O() SiO2(s) + 4 HCl(g) (d) P4(s, white) + 6 H2(g) 4 PH3(g)arrow_forwardCalculate rG for the decomposition of sulfur trioxide to sulfur dioxide and oxygen. 2 SO3(g) 2 SO2(g) + O2(g) (a) Is the reaction product-favored at equilibrium at 25 C? (b) If the reaction is not product-favored at 25 C, is there a temperature at which it will become so? Estimate this temperature. (c) Estimate the equilibrium constant for the reaction at 1500 C.arrow_forwardIdentify each of the processes listed as spontaneous or nons-pontaneous. For each nonspontaneous process, describe the corresponding spontaneous process in the opposite direction. (a) A group of cheerleaders builds a human pyramid. (b) Table salt dissolves in water. (c) A cup of cold coffee in a room becomes steaming hot. (d) Water molecules in the air are converted to hydrogen and oxygen gases. (e) A person peels an orange, and you smell it from across the room.arrow_forward
- In muscle cells under the condition of vigorous exercise, glucose is converted to lactic acid (lactate),CH3CHOHCOOH, by the chemical reaction C6H12O6 2 CH3CHOHCOOHrG = 197 kJ/mol (a) If all of the Gibbs free energy from this reaction wereused to convert ADP to ATP, calculate how many molesof ATP could be produced per mole of glucose. (b) The actual reaction involves the production of 3 molATP per mole of glucose. Calculate the rG for thisoverall reaction. (c) Is the overall reaction in part (b) reactant-favored orproduct-favored?arrow_forwardHeater Meals are food packages that contain their own heat source, lust pour water into the heater unit, wait a few minutes, and voila! You have a hot meal. Mg(s) + 2 H2O() Mg(OH)2(s) + H2(g) (a) Confirm that this is a product-favored reaction at equilibrium at 25 C. (b) What mass of magnesium is required to produce sufficient energy to heat 225 mL of water (density = 0.995 g/mL) from 25 C to the boiling point?arrow_forwardCisplatin [cis-diamminedichloroplatinum(II)] is a potent treatment for certain types of cancers, but the trans isomer is not effective. What is the equilibrium constant at 298 K for the transformation of the cis to the trans isomer? Which is the favored isomer at 298 K, the cis or the trans isomer?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning