![Materials for Civil and Construction Engineers (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134320533/9780134320533_largeCoverImage.gif)
Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.28QP
Under what condition is an air-entraining agent needed? Why? Discuss how the air-entraining agent performs its function. What is the typical diameter of air-entrained voids?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
For automobile, gasoline is a complex mixture of relatively volatile hydrocarbon blended for use in spark-ignition engines. Every time fuel is burned, the carbon is converted to carbon dioxide (CO2), the natural end product of combustion. If we approximate the chemical ormula for gasoline by the compound octane (C8H18) with a density of 739 grams/liter, the stoichiometric reaction for complete combustion is: C8H18 + 12.5O2 8CO2 + 9H2O Thus, for every mole of C8H18 fuel that is burned, eight moles of CO2 are produced, alon with nine moles of water vapor. Estimate the CO2 emission in grams per mile for a car getting 12 km/liter of gasoline.
An urban county with an area of 1,000 mile2 has an estimated 18 million miles of vehicular traffic per day and has a large power plant. The power plant produces 350 MW of electricity at an efficiency of 39%, burning 10,000 Btu/lb coal. The vehicle emission factor for VOCs is 6 grams/mile; the coal-fired boiler emission factor for VOCs is 1.4 lb/ton coal; biogenic emission of VOCs is 0.4 kg/km2 -hr on the average. Determine the total emissions of VOCs in tons/day from all sources (mobile, power plant, and biogenic).
Consider a new 1800 MW power plant that burns dry sub-bituminous coal in a PC-wall-fired,
wet bottom furnace with plant efficiency of 39%. Use the emission factors in your lecture
notes to determine the emission rates of all particulates, PM10, SOx, NOx and CO in ton per
year. No gas treatment equipment was installed.
Chapter 6 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 6 - What ingredients are used for the production of...Ch. 6 - What is the role of gypsum in the production of...Ch. 6 - What is a typical value for the fineness of...Ch. 6 - What are the primary chemical reactions during the...Ch. 6 - Define the C-S-H phase of cement paste.Ch. 6 - What are the four main chemical compounds in...Ch. 6 - Prob. 6.7QPCh. 6 - Define a. interlayer hydration space b. capillary...Ch. 6 - Prob. 6.9QPCh. 6 - The following laboratory tests are performed: a....
Ch. 6 - What is a false set of portland cement? State one...Ch. 6 - The watercement ratio is important because it...Ch. 6 - Discuss the effect of watercement ratio on the...Ch. 6 - Draw a graph to show the general relationship...Ch. 6 - Students in the materials class prepared three...Ch. 6 - Students in the materials class prepared three...Ch. 6 - Two batches of cement mortar with properties as...Ch. 6 - What are the five primary types and functions of...Ch. 6 - Why isnt pozzolan used with Type III cement?Ch. 6 - What type of cement would you use in each of the...Ch. 6 - In order to evaluate the suitability of nonpotable...Ch. 6 - Three standard mortar cubes were made using...Ch. 6 - Four standard mortar cubes were made using...Ch. 6 - Discuss the problem of disposal of waste water...Ch. 6 - State five types of admixtures and discuss their...Ch. 6 - Prob. 6.27QPCh. 6 - Under what condition is an air-entraining agent...Ch. 6 - If a water reducer is added to the concrete mix...Ch. 6 - Prob. 6.30QPCh. 6 - A concrete mix includes the following ingredients...Ch. 6 - The results of an experiment to evaluate the...Ch. 6 - The results of a laboratory experiment to evaluate...Ch. 6 - Referring to Table P6.34, Mix No. 1 was designed...Ch. 6 - Two batches of concrete cylinders were made with...Ch. 6 - Two batches of concrete cylinders were made with...Ch. 6 - What is the source of fly ash? Why is fly ash...Ch. 6 - A materials engineer is working in a research...Ch. 6 - A materials engineer is working in a research...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
1.2 Explain the difference between geodetic and plane
surveys,
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Why is the study of database technology important?
Database Concepts (8th Edition)
Assume a telephone signal travels through a cable at two-thirds the speed of light. How long does it take the s...
Electric Circuits. (11th Edition)
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled ...
Mechanics of Materials (10th Edition)
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
What types of coolant are used in vehicles?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A lignite-fired power plant was designed to produce electricity at a maximum capacity of 750 MW. By average over a year, the plant is operated at 35% plant efficiency and 65% of the design capacity. Assume that the entire amount of sulfur in lignite coal entering the plant is converted to sulfur dioxide (SO2). The power plant is equipped with an 85% efficiency SO2 removal unit. Use the engineering calculation approach and the coal information (dry basis) found in your lecture notes to determine emission rate of SO2 in lb/hr and in lb/BTU input.arrow_forwardAn industry is proposing to construct a new coal-fired power plant that produces 2300 MW electricity with efficiency of 39%. Coal has a heating value of 10,750 Btu/lb, and contains a sulfur content of 2.4%. It is expected that 95% of sulfur will be converted to SO2. The New Source Performance Standards (NSPS) limits the SO2 emission rate from any coal-fired power plants to 1.2 lb/ 106 Btu heat input. Use the engineering calculation approach to determine the followings. a) Coal consumption rate in lb/hr b) SO2 emission rate in lb/hr c) Determine if the newly proposed power plant is required to install a flue gas desulfurization (FGD) process for SO2 removal from the flue gas. What percent SO2 removal is required?arrow_forwardA stack gas at 1 atm and 440oC contains 1100 ppm NO2. If the stack gas is emitted at the rate of 15,000 m3/min, what is the NO2 emission rate in grams per second?arrow_forward
- A distillate fired industrial boiler rated at 60 million BTU/hr uses 2 million gallons per year of 0.25% sulfur distillate. What are its emissions of nitrogen oxides (NOx), SO2 and formaldehyde? Emission factors of air pollutants for distillate combustion in an industrial boiler are given below. NOX Pollutant Emission factor (lb/103 gallon 20 * SO2 142S* PM 10 2 CO 5 VOCs 0.2 Benzene 0.1863 Formaldehyde 1.7261 Cadmium Chromium(VI) *S= %S in fuel 0.0015 0.0002arrow_forward3. Consider a new 1800 MW power plant that burns dry sub-bituminous coal in a PC-wall-fired, wet bottom furnace with plant efficiency of 39%. Use the emission factors in your lecture notes to determine the emission rates of all particulates, PM10, SOx, NOx and CO in ton per year. No gas treatment equipment was installed.arrow_forward1. The particulate emissions were measured from a factory stack. The stack was divided into three sectors with different cross-sectional areas. The measured velocities and particulate concentrations were given below. Sector number 1 2 3 Cross-sectional Stack velocity area (m²) (ft/s) 1.0 60 1.2 45 1.4 55 Particulate concentration (mg/m³) 450 530 610 a) What is the average particulate concentration in mg/m³? b) What are the particulate emissions per unit area in g/m²-s for sector number 1, 2 and 3? c) What are the flow rates of particulates in g/s for sector number 1, 2 and 3?arrow_forward
- An urban county with an area of 1,000 mile² has an estimated 18 million miles of vehicular traffic per day and has a large power plant. The power plant produces 350 MW of electricity at an efficiency of 39%, burning 10,000 Btu/lb coal. The vehicle emission factor for VOCs is 6 grams/mile; the coal-fired boiler emission factor for VOCs is 1.4 lb/ton coal; biogenic emission of VOCs is 0.4 kg/km²-hr on the average. Determine the total emissions of VOCs in tons/day from all sources (mobile, power plant, and biogenic).arrow_forwardFor automobile, gasoline is a complex mixture of relatively volatile hydrocarbon blended for use in spark-ignition engines. Every time fuel is burned, the carbon is converted to carbon dioxide (CO2), the natural end product of combustion. If we approximate the chemical formula for gasoline by the compound octane (C8H18) with a density of 739 grams/liter, the stoichiometric reaction for complete combustion is: C8H18 + 12.5O2 8CO2 + 9H2O Thus, for every mole of C8H18 fuel that is burned, eight moles of CO2 are produced, along with nine moles of water vapor. Estimate the CO2 emission in grams per mile for a car getting 12 km/liter of gasoline.arrow_forwardThe farming plan of steel structure has 30 ft long simply supported beams spaced at 8 ft apart. The beams carry dead loads (D) and live loads (L). The selected beam size is W 18x50. 1) Based on 0.3Fy allowable stress limit due to dead loads only (D), what will be the maximum D load in psf that can be applied to the beams? Ignore beam weight. 2) Using the D load obtained from Part 1 and based on 0.6Fy allowable stress limit due to combined dead loads and live loads, what will be the maximum live load L in psf that can be applied to the beams? 3) If the maximum mid span deflection due to live loads (L) is L/360 ( or 1.0 in in this case), what will be the maximum L load in psf that can be applied to the beams?arrow_forward
- From two inaccessible but intervisible points A and B, the angles to two triangulation stations C and D were observed as follows: Line AB = 500 m long. Angle CAB = 79 deg 30° Angle DAB = 28 deg 30° Angle DBC = 31 deg 30° Angle DBA = 84 deg 30° Find the distance BC Find the distance BD Find the distance CDarrow_forwardFrom two inaccessible but intervisible points A and B, the angles to two triangulation stations C and D were observed as follows: Line AB is 500 m long. Angle CAB = 79 deg 30° Angle DAB = 28 deg 30° Angle DBC = 31 deg 30° Angle DBA = 84 deg 30° 1. Find the distance BC 2. Find the distance BD 3. Find the distance CDarrow_forwardPlease help, make sure it's to box out and make it clear what answers go where...arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305086272/9781305086272_smallCoverImage.gif)
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399395/9781337399395_smallCoverImage.gif)
Fundamentals Of Construction Estimating
Civil Engineering
ISBN:9781337399395
Author:Pratt, David J.
Publisher:Cengage,
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111988609/9781111988609_smallCoverImage.gif)
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305635180/9781305635180_smallCoverImage.gif)
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305635203/9781305635203_smallCoverImage.gif)
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Types of Cement; Author: Tyler Ley;https://www.youtube.com/watch?v=cApoqFALh8s;License: Standard Youtube License