For the transistor in the circuit in Figure P6.26, the parameters are
Figure P6.26
(a)
The quiescent
Answer to Problem 6.26P
The quiescent
Explanation of Solution
Given:
The current gain
The circuit for
The circuit parameters are written below.
Concept used:
The expression for quiescent collector current is written below.
Calculation:
Apply dc analysis and KVL in base emitter loop.
Substitute
Substitute
Therefore, the quiescent collector current
Apply KVL in base collector loop.
Substitute
Therefore, the
Conclusion:
Thus, the quiescent
(b)
The hybrid
Answer to Problem 6.26P
The transconductance
Explanation of Solution
Concept used:
The expression for transconductance
The expression for diffusion resistance
The expression for output resistance
Calculation:
Substitute
Therefore, the transconductance
Substitute
Therefore, the diffusion resistance
Substitute
Therefore, the output resistance
Conclusion:
Thus, the transconductance
(c)
The small signal voltage gain
Answer to Problem 6.26P
The small signal voltage gain
Explanation of Solution
Concept used:
The expression for small signal voltage gain
The expression for small signal current gain
Calculation:
The input resistance
Substitute
Therefore, the small signal voltage gain
Substitute
Therefore, the small signal current gain
Conclusion:
Thus, the small signal voltage gain
(d)
The input resistance
Answer to Problem 6.26P
The input resistance
Explanation of Solution
Concept used:
The expression for input resistance
The expression for input resistance
Calculation:
Substitute
Therefore, the input resistance
Substitute
Therefore, the input resistance
Conclusion:
Thus, the input resistance
(e)
The small signal voltage gain
Answer to Problem 6.26P
The small signal voltage gain
Explanation of Solution
Concept used:
The expression for small signal voltage gain
Calculation:
Substitute
Therefore, the small signal voltage gain
Since, small signal current gain is independent of source resistance, so it is same as obtained in part (c).
Therefore, the small signal current gain
Conclusion:
Thus, the small signal voltage gain
Want to see more full solutions like this?
Chapter 6 Solutions
Microelectronics: Circuit Analysis and Design
- question in photo pleasearrow_forwardI need a clear step by step answer please and explanation please on how to obtain the values of Th and Tl and Vlarrow_forward4. a) Determine the output waveform for the following circuit. b) Repeat with the B input held LOW c) Repeat with B held HIGH A 4. 1 0. I Time 1 0.arrow_forward
- Q6: Design a boost converter to provide an output voltage of 36V from a 24V source. The load is 50W. The voltage ripple factor must be less than 0.5%. (a)Specify the duty cycle ratio, (b)Inductor and capacitor size, (c)and power device.arrow_forward5. Determine Leq at terminal a-b the circuit below. Ans.7.778 mH 10 mH 60 mH 25 mH 20 mH a o o b ele 30 mHarrow_forwardhow to draw the small-signal modelarrow_forward
- ex-1arrow_forwardQ-4. When VGs of a JFET changes from -3.1 V to -3 V, the drain current changes from 1 mA to 1.3 mA. Then the value of trans-conductance is .arrow_forward3) Load for a circuit with direct current source voltage The waveform of the voltage generated on it is below shown. Source for this working circuit that is symmetrical The value of the voltage and load resistance is 100 V and 5Ω respectively.It is given as. Find what is required below. d) Find the effective value of the output voltage e) Total harmonic distortion in output voltageCalculate (THD)arrow_forward
- 4- Design a boost converter that will have an output of 60 V from a 24-V source. Design for continuous inductor current and an output ripple voltage of less than one percent. The load is a resistance of 50 2. Assume ideal components for this design. VL ooooo ip - ^arrow_forwardDesign a bias circuit for NPN silicon transistor having a nominal B-100 to be used in voltage divider circuit with Q-point of Ic 10 mA and VCE= 10 V. Use standard valued 5% resistors and draw a schematic %3D diagram of your designarrow_forward3)please solve! Will upvotearrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,