Fluid Mechanics
Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 6.127P
To determine

The flow rate and direction in each pipe?

If pA=120lbf/in2, determine the pressures at point B,C,D ?

Expert Solution & Answer
Check Mark

Answer to Problem 6.127P

QAB=1.253ft3/sQAC=0.747ft3/sQBC=1.011ft3/sQCD=1.876ft3/sQBD=0.124ft3/s

pB=107lbf/in2

pC=105lbf/in2

pD=94lbf/in2

Explanation of Solution

Given information:

Fluid Mechanics, Chapter 6, Problem 6.127P

For all pipes, friction factor is equal to 0.025

The fluid is water at 20°C

Inlet and exit flow rate is equal to 2ft3/s

The basic rules of pipe networks are,

“The net pressure change in a closed loop must be equal to zero”

“The net flow into a junction must be equal to zero”

“All pressure changes must satisfy moody and minor loss friction co-relation”

The head loss hf can be defined as,

hf=8LfQ2π2gd5=KQ2

In above equation,

L - Length of pipe

f - Friction factor

Q - Flow rate

d - Diameter

K - Loss co efficient

The total head loss is equal to zero in a closed loop.

The pressure difference ΔP can be defined as,

ΔP=ρghf

Where, ρ - density

Calculation:

According to the explanation given,

Equate head loss to find loss co efficient in each pipe.

For pipe AC,

KAC=8Lfπ2gd5=8(3000ft)(0.025)π2(32.2ft/s2)( 6 12 ft)5=60.415

Similarly, for each pipe

KAB=8Lfπ2gd5=8( 4000ft)( 0.025)π2( 32.2ft/ s 2 ) ( 8 12 ft )5=19.116KBC=8Lfπ2gd5=8( 5000ft)( 0.025)π2( 32.2ft/ s 2 ) ( 9 12 ft )5=13.260KCD=8Lfπ2gd5=8( 4000ft)( 0.025)π2( 32.2ft/ s 2 ) ( 8 12 ft )5=19.116KBD=8Lfπ2gd5=8( 3000ft)( 0.025)π2( 32.2ft/ s 2 ) ( 3 12 ft )5=1933.284

According to the definitions, the total head loss in a closed loop is equal to zero,

Therefore,

Assume the directions of the flow as in the figure above,

For closed loop ABC,

19.116QAB2+13.260QBC260.415QAC2=0(1)

For closed loop BCD,

13.260QBC2+19.116QCD21933.284QBD2=0(2)

The net flow rate is equal to zero at all junctions, therefore,

QAB+QAC=2ft3/s(3)QCD+QBD=2ft3/s(4)QBD+QBC=QAB(5)QAC+QBC=QCD(6)

By solving above equations,

We get,

QAB=1.253ft3/sQAC=0.747ft3/sQBC=1.011ft3/sQCD=1.876ft3/sQBD=0.124ft3/s

To find the pressure at point B,

We know that,

pA=120lbf/in2

Therefore,

pB=pAρghf AB=(120lbf/in2)(144in2/ft2)(62.4lbf/ft3)(19.116)(1.253f t 3/s)2=107lbf/in2

Similarly,

pC=pAρghf AC=(120lbf/in2)(144in2/ft2)(62.4lbf/ft3)(60.415)(0.747f t 3/s)2=105lbf/ft2

pD=pBρghf BD=(107lbf/in2)(144in2/ft2)(62.4lbf/ft3)(1933.284)(0.124f t 3/s)2=94lbf/in2

Conclusion:

The flow rates in each pipe is equal to,

QAB=1.253ft3/sQAC=0.747ft3/sQBC=1.011ft3/sQCD=1.876ft3/sQBD=0.124ft3/s

The pressure at point B, C and D are,

pB=107lbf/in2

pC=105lbf/in2

pD=94lbf/in2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
This problem studies the response of two single degree of freedom bridge systems shown in Figure 1 under three loading cases. The problem has two parts. Part A and Part B use the same loading cases but the system is modified. Assume the following three loading cases in both Part A and Part B: (a) Harmonic wind load acting on the bridge deck pw(t) = powsin(ωwt) with amplitude pow and forcing circular frequency ωw. (b) Harmonic displacement base excitation acting at the base of the bridge pier ug(t) = ugosin(ωgt) with amplitude ugo and displacement circular frequency ωg. (c) Rectangular pulse load acting on the bridge deck with amplitude pop and pulse duration td. Part A  The system includes part of a bridge deck and a bridge pier shown in Figure 1(a). For each loading case find the symbolic expression of the peak shear force in the bridge pier assuming the following: • The bridge deck is rigid and it has a mass m. • The bridge deck is rigidly connected with the bridge pier (i.e.,…
specific speed P #2 Q.2. A Pelton wheel turbine of 1.9 m diameter works under a head of 50 m at 150 rpm. The buckets are exposed to water jet which delivers from a nozzle of 20 cm in diameter. Find the overall efficiency power produced by the wheel if the buckets deflects the jet through an angle of 163°. coefficient of velocity as 0.98 [50 Marks] ·licosply Y and no Take the
d Q.2. A Pelton wheel has a mean bucket speed of 15 m/s. The jet of water issued from a nozzle of 12 cm in diameter impinges the bucket with a velocity of 40 m/s. If the buckets deflect the jet through an angle of 165°, find the head and power generated by the turbine. Assume the hydraulic efficiency is 90% and the mechanical efficiency is 85%. [50 Marks] Po 7n = 90%

Chapter 6 Solutions

Fluid Mechanics

Ch. 6 - Water at 20°C flows upward at 4 m/s in a...Ch. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - P6.17 A capillary viscometer measures the time...Ch. 6 - P6.18 SAE 50W oil at 20°C flows from one tank to...Ch. 6 - Prob. 6.19PCh. 6 - The oil tanks in Tinyland are only 160 cm high,...Ch. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Let us attack Prob. P6.25 in symbolic fashion,...Ch. 6 - Prob. 6.28PCh. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - A laminar flow element (LFE) (Meriam Instrument...Ch. 6 - SAE 30 oil at 20°C flows in the 3-cm.diametcr pipe...Ch. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - In the overlap layer of Fig. 6.9a, turbulent shear...Ch. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - P6.41 Two reservoirs, which differ in surface...Ch. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - P6.44 Mercury at 20°C flows through 4 m of...Ch. 6 - P6.45 Oil, SG = 0.88 and v = 4 E-5 m2/s, flows at...Ch. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Water at 2OC flows by gravity through a smooth...Ch. 6 - A swimming pool W by Y by h deep is to be emptied...Ch. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - P6.59 The following data were obtained for flow of...Ch. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Water at 20°C is to be pumped through 2000 ft of...Ch. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - P6.69 For Prob. P6.62 suppose the only pump...Ch. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - P6.76 The small turbine in Fig. P6.76 extracts 400...Ch. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - The head-versus-flow-rate characteristics of a...Ch. 6 - Prob. 6.81PCh. 6 - Prob. 6.82PCh. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - SAE 10 oil at 20°C flows at an average velocity of...Ch. 6 - A commercial steel annulus 40 ft long, with a = 1...Ch. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100PCh. 6 - Prob. 6.101PCh. 6 - *P6.102 A 70 percent efficient pump delivers water...Ch. 6 - Prob. 6.103PCh. 6 - Prob. 6.104PCh. 6 - Prob. 6.105PCh. 6 - Prob. 6.106PCh. 6 - Prob. 6.107PCh. 6 - P6.108 The water pump in Fig. P6.108 maintains a...Ch. 6 - In Fig. P6.109 there are 125 ft of 2-in pipe, 75...Ch. 6 - In Fig. P6.110 the pipe entrance is sharp-edged....Ch. 6 - For the parallel-pipe system of Fig. P6.111, each...Ch. 6 - Prob. 6.112PCh. 6 - Prob. 6.113PCh. 6 - Prob. 6.114PCh. 6 - Prob. 6.115PCh. 6 - Prob. 6.116PCh. 6 - Prob. 6.117PCh. 6 - Prob. 6.118PCh. 6 - Prob. 6.119PCh. 6 - Prob. 6.120PCh. 6 - Prob. 6.121PCh. 6 - Prob. 6.122PCh. 6 - Prob. 6.123PCh. 6 - Prob. 6.124PCh. 6 - Prob. 6.125PCh. 6 - Prob. 6.126PCh. 6 - Prob. 6.127PCh. 6 - In the five-pipe horizontal network of Fig....Ch. 6 - Prob. 6.129PCh. 6 - Prob. 6.130PCh. 6 - Prob. 6.131PCh. 6 - Prob. 6.132PCh. 6 - Prob. 6.133PCh. 6 - Prob. 6.134PCh. 6 - An airplane uses a pitot-static tube as a...Ch. 6 - Prob. 6.136PCh. 6 - Prob. 6.137PCh. 6 - Prob. 6.138PCh. 6 - P6.139 Professor Walter Tunnel needs to measure...Ch. 6 - Prob. 6.140PCh. 6 - Prob. 6.141PCh. 6 - Prob. 6.142PCh. 6 - Prob. 6.143PCh. 6 - Prob. 6.144PCh. 6 - Prob. 6.145PCh. 6 - Prob. 6.146PCh. 6 - Prob. 6.147PCh. 6 - Prob. 6.148PCh. 6 - Prob. 6.149PCh. 6 - Prob. 6.150PCh. 6 - Prob. 6.151PCh. 6 - Prob. 6.152PCh. 6 - Prob. 6.153PCh. 6 - Prob. 6.154PCh. 6 - Prob. 6.155PCh. 6 - Prob. 6.156PCh. 6 - Prob. 6.157PCh. 6 - Prob. 6.158PCh. 6 - Prob. 6.159PCh. 6 - Prob. 6.160PCh. 6 - Prob. 6.161PCh. 6 - Prob. 6.162PCh. 6 - Prob. 6.163PCh. 6 - Prob. 6.1WPCh. 6 - Prob. 6.2WPCh. 6 - Prob. 6.3WPCh. 6 - Prob. 6.4WPCh. 6 - Prob. 6.1FEEPCh. 6 - Prob. 6.2FEEPCh. 6 - Prob. 6.3FEEPCh. 6 - Prob. 6.4FEEPCh. 6 - Prob. 6.5FEEPCh. 6 - Prob. 6.6FEEPCh. 6 - Prob. 6.7FEEPCh. 6 - Prob. 6.8FEEPCh. 6 - Prob. 6.9FEEPCh. 6 - Prob. 6.10FEEPCh. 6 - Prob. 6.11FEEPCh. 6 - Prob. 6.12FEEPCh. 6 - Prob. 6.13FEEPCh. 6 - Prob. 6.14FEEPCh. 6 - Prob. 6.15FEEPCh. 6 - Prob. 6.1CPCh. 6 - Prob. 6.2CPCh. 6 - Prob. 6.3CPCh. 6 - Prob. 6.4CPCh. 6 - Prob. 6.5CPCh. 6 - Prob. 6.6CPCh. 6 - Prob. 6.7CPCh. 6 - Prob. 6.8CPCh. 6 - Prob. 6.9CPCh. 6 - A hydroponic garden uses the 10-m-long...Ch. 6 - It is desired to design a pump-piping system to...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license