Fluid Mechanics
Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 6.127P
To determine

The flow rate and direction in each pipe?

If pA=120lbf/in2, determine the pressures at point B,C,D ?

Expert Solution & Answer
Check Mark

Answer to Problem 6.127P

QAB=1.253ft3/sQAC=0.747ft3/sQBC=1.011ft3/sQCD=1.876ft3/sQBD=0.124ft3/s

pB=107lbf/in2

pC=105lbf/in2

pD=94lbf/in2

Explanation of Solution

Given information:

Fluid Mechanics, Chapter 6, Problem 6.127P

For all pipes, friction factor is equal to 0.025

The fluid is water at 20°C

Inlet and exit flow rate is equal to 2ft3/s

The basic rules of pipe networks are,

“The net pressure change in a closed loop must be equal to zero”

“The net flow into a junction must be equal to zero”

“All pressure changes must satisfy moody and minor loss friction co-relation”

The head loss hf can be defined as,

hf=8LfQ2π2gd5=KQ2

In above equation,

L - Length of pipe

f - Friction factor

Q - Flow rate

d - Diameter

K - Loss co efficient

The total head loss is equal to zero in a closed loop.

The pressure difference ΔP can be defined as,

ΔP=ρghf

Where, ρ - density

Calculation:

According to the explanation given,

Equate head loss to find loss co efficient in each pipe.

For pipe AC,

KAC=8Lfπ2gd5=8(3000ft)(0.025)π2(32.2ft/s2)( 6 12 ft)5=60.415

Similarly, for each pipe

KAB=8Lfπ2gd5=8( 4000ft)( 0.025)π2( 32.2ft/ s 2 ) ( 8 12 ft )5=19.116KBC=8Lfπ2gd5=8( 5000ft)( 0.025)π2( 32.2ft/ s 2 ) ( 9 12 ft )5=13.260KCD=8Lfπ2gd5=8( 4000ft)( 0.025)π2( 32.2ft/ s 2 ) ( 8 12 ft )5=19.116KBD=8Lfπ2gd5=8( 3000ft)( 0.025)π2( 32.2ft/ s 2 ) ( 3 12 ft )5=1933.284

According to the definitions, the total head loss in a closed loop is equal to zero,

Therefore,

Assume the directions of the flow as in the figure above,

For closed loop ABC,

19.116QAB2+13.260QBC260.415QAC2=0(1)

For closed loop BCD,

13.260QBC2+19.116QCD21933.284QBD2=0(2)

The net flow rate is equal to zero at all junctions, therefore,

QAB+QAC=2ft3/s(3)QCD+QBD=2ft3/s(4)QBD+QBC=QAB(5)QAC+QBC=QCD(6)

By solving above equations,

We get,

QAB=1.253ft3/sQAC=0.747ft3/sQBC=1.011ft3/sQCD=1.876ft3/sQBD=0.124ft3/s

To find the pressure at point B,

We know that,

pA=120lbf/in2

Therefore,

pB=pAρghf AB=(120lbf/in2)(144in2/ft2)(62.4lbf/ft3)(19.116)(1.253f t 3/s)2=107lbf/in2

Similarly,

pC=pAρghf AC=(120lbf/in2)(144in2/ft2)(62.4lbf/ft3)(60.415)(0.747f t 3/s)2=105lbf/ft2

pD=pBρghf BD=(107lbf/in2)(144in2/ft2)(62.4lbf/ft3)(1933.284)(0.124f t 3/s)2=94lbf/in2

Conclusion:

The flow rates in each pipe is equal to,

QAB=1.253ft3/sQAC=0.747ft3/sQBC=1.011ft3/sQCD=1.876ft3/sQBD=0.124ft3/s

The pressure at point B, C and D are,

pB=107lbf/in2

pC=105lbf/in2

pD=94lbf/in2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three cables are pulling on a ring located at the origin, as shown in the diagram below.  FA is 200 N in magnitude with a transverse angle of 30° and an azimuth angle of 140°.  FB is 240 N in magnitude with coordinate direction angles α = 135° and β = 45°.  Determine the magnitude and direction of FC so that the resultant of all 3 force vectors lies on the z-axis and has a magnitude of 300 N.  Specify the direction of FC using its coordinate direction angles.
turbomachienery
auto controls

Chapter 6 Solutions

Fluid Mechanics

Ch. 6 - Water at 20°C flows upward at 4 m/s in a...Ch. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - P6.17 A capillary viscometer measures the time...Ch. 6 - P6.18 SAE 50W oil at 20°C flows from one tank to...Ch. 6 - Prob. 6.19PCh. 6 - The oil tanks in Tinyland are only 160 cm high,...Ch. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Let us attack Prob. P6.25 in symbolic fashion,...Ch. 6 - Prob. 6.28PCh. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - A laminar flow element (LFE) (Meriam Instrument...Ch. 6 - SAE 30 oil at 20°C flows in the 3-cm.diametcr pipe...Ch. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - In the overlap layer of Fig. 6.9a, turbulent shear...Ch. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - P6.41 Two reservoirs, which differ in surface...Ch. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - P6.44 Mercury at 20°C flows through 4 m of...Ch. 6 - P6.45 Oil, SG = 0.88 and v = 4 E-5 m2/s, flows at...Ch. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Water at 2OC flows by gravity through a smooth...Ch. 6 - A swimming pool W by Y by h deep is to be emptied...Ch. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - P6.59 The following data were obtained for flow of...Ch. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Water at 20°C is to be pumped through 2000 ft of...Ch. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - P6.69 For Prob. P6.62 suppose the only pump...Ch. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - P6.76 The small turbine in Fig. P6.76 extracts 400...Ch. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - The head-versus-flow-rate characteristics of a...Ch. 6 - Prob. 6.81PCh. 6 - Prob. 6.82PCh. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - SAE 10 oil at 20°C flows at an average velocity of...Ch. 6 - A commercial steel annulus 40 ft long, with a = 1...Ch. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100PCh. 6 - Prob. 6.101PCh. 6 - *P6.102 A 70 percent efficient pump delivers water...Ch. 6 - Prob. 6.103PCh. 6 - Prob. 6.104PCh. 6 - Prob. 6.105PCh. 6 - Prob. 6.106PCh. 6 - Prob. 6.107PCh. 6 - P6.108 The water pump in Fig. P6.108 maintains a...Ch. 6 - In Fig. P6.109 there are 125 ft of 2-in pipe, 75...Ch. 6 - In Fig. P6.110 the pipe entrance is sharp-edged....Ch. 6 - For the parallel-pipe system of Fig. P6.111, each...Ch. 6 - Prob. 6.112PCh. 6 - Prob. 6.113PCh. 6 - Prob. 6.114PCh. 6 - Prob. 6.115PCh. 6 - Prob. 6.116PCh. 6 - Prob. 6.117PCh. 6 - Prob. 6.118PCh. 6 - Prob. 6.119PCh. 6 - Prob. 6.120PCh. 6 - Prob. 6.121PCh. 6 - Prob. 6.122PCh. 6 - Prob. 6.123PCh. 6 - Prob. 6.124PCh. 6 - Prob. 6.125PCh. 6 - Prob. 6.126PCh. 6 - Prob. 6.127PCh. 6 - In the five-pipe horizontal network of Fig....Ch. 6 - Prob. 6.129PCh. 6 - Prob. 6.130PCh. 6 - Prob. 6.131PCh. 6 - Prob. 6.132PCh. 6 - Prob. 6.133PCh. 6 - Prob. 6.134PCh. 6 - An airplane uses a pitot-static tube as a...Ch. 6 - Prob. 6.136PCh. 6 - Prob. 6.137PCh. 6 - Prob. 6.138PCh. 6 - P6.139 Professor Walter Tunnel needs to measure...Ch. 6 - Prob. 6.140PCh. 6 - Prob. 6.141PCh. 6 - Prob. 6.142PCh. 6 - Prob. 6.143PCh. 6 - Prob. 6.144PCh. 6 - Prob. 6.145PCh. 6 - Prob. 6.146PCh. 6 - Prob. 6.147PCh. 6 - Prob. 6.148PCh. 6 - Prob. 6.149PCh. 6 - Prob. 6.150PCh. 6 - Prob. 6.151PCh. 6 - Prob. 6.152PCh. 6 - Prob. 6.153PCh. 6 - Prob. 6.154PCh. 6 - Prob. 6.155PCh. 6 - Prob. 6.156PCh. 6 - Prob. 6.157PCh. 6 - Prob. 6.158PCh. 6 - Prob. 6.159PCh. 6 - Prob. 6.160PCh. 6 - Prob. 6.161PCh. 6 - Prob. 6.162PCh. 6 - Prob. 6.163PCh. 6 - Prob. 6.1WPCh. 6 - Prob. 6.2WPCh. 6 - Prob. 6.3WPCh. 6 - Prob. 6.4WPCh. 6 - Prob. 6.1FEEPCh. 6 - Prob. 6.2FEEPCh. 6 - Prob. 6.3FEEPCh. 6 - Prob. 6.4FEEPCh. 6 - Prob. 6.5FEEPCh. 6 - Prob. 6.6FEEPCh. 6 - Prob. 6.7FEEPCh. 6 - Prob. 6.8FEEPCh. 6 - Prob. 6.9FEEPCh. 6 - Prob. 6.10FEEPCh. 6 - Prob. 6.11FEEPCh. 6 - Prob. 6.12FEEPCh. 6 - Prob. 6.13FEEPCh. 6 - Prob. 6.14FEEPCh. 6 - Prob. 6.15FEEPCh. 6 - Prob. 6.1CPCh. 6 - Prob. 6.2CPCh. 6 - Prob. 6.3CPCh. 6 - Prob. 6.4CPCh. 6 - Prob. 6.5CPCh. 6 - Prob. 6.6CPCh. 6 - Prob. 6.7CPCh. 6 - Prob. 6.8CPCh. 6 - Prob. 6.9CPCh. 6 - A hydroponic garden uses the 10-m-long...Ch. 6 - It is desired to design a pump-piping system to...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license